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Abstract: In this paper not only discussed the irrational behavior of the generalized Fibonacci numbers but 
also study the behavior of ζ(2) using Lucas and Pell numbers.
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INTRODUCTION

Fibonacci,  Lucas and  Pell  numbers are discussed 
in various studies (Leveque, 1990; Duverney, 1993; 
Matala-Aho and Vanen 1998; Kono and Uehara, 1998; 
Shiokara 1998). The aim of this article is to observe 
irrational behavior of these numbers. This study also 
discussed the irrationality of ζ(2) by using q-derivative
and q-integral.

FIBONACCI NUMBERS

Let a Fibonacci number Fn be defined as F1=F2=1,
Fn = Fn-1 + Fn-2, for n≥3. It is well known that Fibonacci 
numbers are relatively prime.
Therefore

• m n m 1 n m n 1F F F F F+ − += +

• Fmn is divisible by Fm for m≥1,n≥1
• If m = qn+r, then gcd(Fm, Fn) = gcd(Fr, Fn)
• gcd(FmFn)=Fd where d = gcd(m,n)
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 if and only if m/n for m≥n≥2

Lemma: For n≥1, we have

• ( ) ( )n 12
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+ −= + − ≥

• 2
2k 2k 1 2 k 1F F F 1+ −= −

• 1 3 5 2 n 1 2nF F F F F−+ + +⋅ ⋅ ⋅ ⋅ ⋅+ =

• 2 4 6 2n 2n 1F F F F F 1++ + +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ = −
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for |q|<1; therefore we have the following theorem.

Theorem 1: 3n 1
n

1
F

∞

=∑  is an irrational number.

Remark: Let {Fn}n≥1 be Fibonacci numbers. Then
several results of Fibonacci zeta functions with
Riemann zeta functions may be compared as under:
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Let {Fn}n≥1 be Fibonacci numbers.
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+∑   is irrational (Browein, 94)
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LUCAS AND PELL NUMBERS

The Lucas numbers Fn are defined by the same rule 
as the Fibonacci numbers as follows; L0 = 2, L1 = 1, L2

= 3, Ln+2 = Ln+1, n≥1, then Lucas and Fibonacci
numbers are related to each other. For example,

• 2n n nF F L=

• ( )n
2n nL L 2 1= − −

•
n

k n 2k 0
L L 1+=

= −∑
• n n 1 n 1L F F− += +

• n n 1 n 15F L L− += +

• m n m n n m2F F L F L+ = +  and
• m n m n m n2L L L 5F F+ = +

Note that for algebraic numbers 
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and we also know that
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The Pell numbers Pn and Qn are defined as

( )0 1 n n 1 n 2P 0 , P 1,P 2P P n 2− −= = = + ≥

( )0 1 n n 1 n 2Q 0 , Q 1,Q 2Q Q n 2− −= = = + ≥

which are also known as generalized Fibonacci
numbers.

Proposition 1: If 

1 2, 1 2α = + β = −

are the roots of x2-2x-1 = 0, then Pell numbers can be 
expressed as 

n n n n

n nP , Q
22 2

α −β α + β= =  for n≥0
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Proof: If α and β are the roots of x2-2x-1 = 0, so the 
results are obtained.

Proposition 2: For the Pell numbers when n≥1, we 
have the following relations:

• 2n n nP 2 P Q=

• n n 1 nP P Q−+ =

• ( )n 12
n 2n2Q Q 1 +− = −

• n n 1 n 3 n 2P P P 3P+ + ++ + =  and

• ( )n2 2
n nQ 2P 1− = −

so n

n

Q
P

 is convergent of the continued fraction

expansion of 2  of the Pell equation x2-2y2 = 1.

Proof: From the proposition 1; two question arises

• Is kn 1
n

1
P

∞

=∑  irrational for k≥1?

• Is kn 1
n

1
Q

∞

=∑  irrational for k≥1?

The behavior of ƒq(2): For |q|<1, defined q-derivative
as:
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For x∈ , defined q-integral as 
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The q-binomial formula is
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Finally we get
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Hence ζq(2) is irrational.
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