The Irrationality of Fibonacci, Lucas and Pell Numbers
${ }^{1}$ Muhammad Iqbal Chaudhry, ${ }^{2}$ Syed Inayat Ali Shah and ${ }^{3}$ Muhammad Arif
${ }^{1}$ Department of Mathematics, University of Education Lahore, Pakistan
${ }^{2}$ Department of Mathematics, Islamia College University, Peshawar, Pakistan
${ }^{3}$ Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan

Abstract

In this paper not only discussed the irrational behavior of the generalized Fibonacci numbers but also study the behavior of $\zeta(2)$ using Lucas and Pell numbers.

Key words: Fibonacci. lucas and pell numbers. pell equation

INTRODUCTION

Fibonacci, Lucas and Pell numbers are discussed in various studies (Leveque, 1990; Duverney, 1993; Matala-Aho and Vanen 1998; Kono and Uehara, 1998; Shiokara 1998). The aim of this article is to observe irrational behavior of these numbers. This study also discussed the irrationality of $\zeta(2)$ by using q-derivative and q-integral.

FIBONACCI NUMBERS

Let a Fibonacci number F_{n} be defined as $F_{1}=F_{2}=1$, $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 3$. It is well known that Fibonacci numbers are relatively prime.
Therefore

- $\mathrm{F}_{\mathrm{m}+\mathrm{n}}=\mathrm{F}_{\mathrm{m}-1} \mathrm{~F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{m}} \mathrm{F}_{\mathrm{n}+1}$
- F_{m} is divisible by F_{m} for $m \geq 1, n \geq 1$
- If $m=q n+r$, then $\operatorname{gcd}\left(F_{m}, F_{n}\right)=\operatorname{gcd}\left(F_{r}, F_{n}\right)$
- $\operatorname{gcd}\left(\mathrm{F}_{\mathrm{m}} \mathrm{F}_{\mathrm{n}}\right)=\mathrm{F}_{\mathrm{d}}$ where $\mathrm{d}=\operatorname{gcd}(\mathrm{m}, \mathrm{n})$
- $\left(\frac{F_{m}}{F_{n}}\right)$ if and only if m / n for $m \geq n \geq 2$

Lemma: For $n \geq 1$, we have

- $\quad \mathrm{F}_{\mathrm{n}}^{2}=\mathrm{F}_{\mathrm{n}+1} \mathrm{~F}_{\mathrm{n}-1}+(-1)^{\mathrm{n}-1} \quad(\mathrm{n} \geq 2)$
- $\mathrm{F}_{2 \mathrm{k}}^{2}=\mathrm{F}_{2 \mathrm{k}+1} \mathrm{~F}_{2 \mathrm{k}-1}-1$
- $\mathrm{F}_{1}+\mathrm{F}_{3}+\mathrm{F}_{5}+\cdots \cdots+\mathrm{F}_{2 \mathrm{n}-1}=\mathrm{F}_{2 \mathrm{n}}$
- $\mathrm{F}_{2}+\mathrm{F}_{4}+\mathrm{F}_{6}+\cdots \cdots \cdots+\mathrm{F}_{2 \mathrm{n}}=\mathrm{F}_{2 \mathrm{n}+1}-1$
- $F_{1}-F_{2}+F_{3}-F_{4}+\cdots \cdots+(-1)^{n+1} F_{n}=1+(-1)^{n+1} F_{n-1}$
- $\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+\mathrm{F}_{3}^{2}+\cdots \cdots+\mathrm{F}_{\mathrm{n}}^{2}=\mathrm{F}_{\mathrm{n}} \times \mathrm{F}_{\mathrm{n}+1}$

Now define

$$
\ell_{\mathrm{q}}(\mathrm{x} ; \mathrm{s})=\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{x}^{\mathrm{n}}}{(1-\mathrm{q})^{\mathrm{s}}} \text { for } 0<|\mathrm{q}|<1,0<\mathrm{x}<1
$$

By taking

$$
q=-\beta^{2}, x=-\beta^{3}\left(\text { where } \beta=\frac{1-\sqrt{5}}{2}\right) \text { and } \alpha \beta=-1
$$

we have

$$
(\alpha-\beta)^{3} \ell_{-\beta^{2}}\left(-\beta^{3} ; 3\right)=\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{~F}_{\mathrm{n}}^{3}}
$$

Now

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{~F}_{2^{\mathrm{n}}}}=\frac{7-\sqrt{5}}{2}
$$

So

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{~F}_{2^{\mathrm{n}}}}=\frac{7-\sqrt{5}}{2}
$$

is irrational number. It is easy to see that

$$
\ell_{\mathrm{q}}(\mathrm{x} ; 3)=\mathrm{x} \frac{\sum_{\mathrm{n}=1}^{\infty} \mathrm{q}^{\mathrm{n}} \mathrm{ne}_{\mathrm{q}}^{\prime}\left(\mathrm{zq}^{\mathrm{n}}\right) \Pi_{\ell=1, \mathrm{n} \neq \ell \mathrm{e}_{\mathrm{q}}\left(\mathrm{zq}^{i}\right)}^{\infty}}{\Pi_{\mathrm{n}=1, \mathrm{eq}\left(2 \mathrm{q}^{i}\right)}^{\infty}}
$$

where

$$
e_{q}(x)=\sum_{n=0}^{\infty} \frac{1}{(1-q)\left(1-q^{2}\right) \cdots \cdot\left(1-q^{n}\right)} x^{n}
$$

for $|\mathrm{q}|<1$; therefore we have the following theorem.
Theorem 1: $\sum_{n=1}^{\infty} \frac{1}{\mathrm{~F}_{\mathrm{n}}^{3}}$ is an irrational number.

Remark: Let $\left\{\mathrm{F}_{\mathrm{n}}\right\}_{\mathrm{n} \geq 1}$ be Fibonacci numbers. Then several results of Fibonacci zeta functions with Riemann zeta functions may be compared as under:

Corresponding Author: Dr. Muhammad Iqbal Chaudhry, Department of Mathematics, University of Education Lahore, Pakistan

Let $\left\{\mathrm{F}_{\mathrm{n}}\right\}_{\mathrm{n} \geq 1}$ be Fibonacci numbers.

1. $\quad \sum_{n=1}^{\infty} \frac{1}{F_{a^{n}+b}},(a, b) \neq(2,0)$ is irrational (Kumiko Nishioka) $\quad \sum_{n=1}^{\infty} \frac{1}{a^{n}+b},(a \geq 2), \forall b \in \mathbb{N}$ is irrational (Browein, 94)
2. $\quad \sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{~F}}$ is irrational (Andre-Jeannin, Duverney)
3. $\quad \sum_{n=1}^{\infty} \frac{1}{\mathrm{~F}_{n}^{2 k}}$ is transcendental for $\mathrm{k} \in \mathbb{N}$ (D. Nishioka, I. Shiokawa) $\quad \sum_{\mathrm{n}=1}^{\infty} \frac{1}{1^{2 k}}=\zeta(2 \mathrm{k})$ is transecendental
4. $\quad \sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{~F}_{\mathrm{a}^{k}+\mathrm{b}}}$ is transcendental $(\mathrm{a}, \mathrm{b} \in \mathbb{N},(\mathrm{a}, \mathrm{b}) \neq(2,0), \mathrm{k} \geq 2) \quad \sum_{\mathrm{n}=1}^{\infty} \frac{1}{\left(\mathrm{a}^{\mathrm{n}}+\mathrm{b}\right)^{k}}$ is unknown
5. $\quad \sum_{n=1}^{\infty} \frac{1}{F_{n}^{3}}$ is irrational (I. Shiokara, T. Kim) $\quad \sum_{n=1}^{\infty} \frac{1}{1^{3}}$ is irrational
6. $\quad \sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}}}{\mathrm{F}_{\mathrm{n}} \mathrm{F}_{\mathrm{i}}}=\frac{1+\sqrt{5}}{2}$
7. $\quad \sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+1}}$ is irrational
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+1)}=1-2 \log 2$
$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$
8. $\quad \sum_{n=1}^{\infty} \frac{1}{\mathrm{~F}_{2 n}}$ is irrational
9. $\quad \sum_{n=1}^{\infty} \frac{1}{F_{2 n+1}}$ is unknown
10. $\sum_{n=1}^{\infty} \frac{1}{F_{2 n}^{2}+1}$ is unknown
11. $\sum_{n=1}^{\infty} \frac{1}{\mathrm{~F}^{2}}$ is unknown
12. $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\left(\mathrm{~F}_{\mathrm{n}} \mathrm{F}_{\mathrm{n}}+\right)^{k}}$ is unknown $(\mathrm{k} \geq 2)$

LUCAS AND PELL NUMBERS

The Lucas numbers F_{n} are defined by the same rule as the Fibonacci numbers as follows; $\mathrm{L}_{0}=2, \mathrm{~L}_{1}=1, \mathrm{~L}_{2}$ $=3, \mathrm{~L}_{\mathrm{n}+2}=\mathrm{L}_{\mathrm{n}+1}, \mathrm{n} \geq 1$, then Lucas and Fibonacci numbers are related to each other. For example,

- $\mathrm{F}_{2 \mathrm{n}}=\mathrm{F}_{\mathrm{n}} \mathrm{L}_{\mathrm{n}}$
- $\quad \mathrm{L}_{2 \mathrm{n}}=\mathrm{L}_{\mathrm{n}}-2(-1)^{\mathrm{n}}$
- $\quad \sum_{k=0}^{n} L_{k}=L_{n+2}-1$
- $\mathrm{L}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}+1}$
- $5 \mathrm{~F}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}-1}+\mathrm{L}_{\mathrm{n}+1}$
- $2 \mathrm{~F}_{\mathrm{m}+\mathrm{n}}=\mathrm{F}_{\mathrm{m}} \mathrm{L}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \mathrm{L}_{\mathrm{m}}$ and
- $2 \mathrm{~L}_{\mathrm{m}+\mathrm{n}}=\mathrm{L}_{\mathrm{m}} \mathrm{L}_{\mathrm{n}}+5 \mathrm{~F}_{\mathrm{m}} \mathrm{F}_{\mathrm{n}}$

Note that for algebraic numbers

$$
\tau=\frac{1+\sqrt{5}}{2}
$$

and

$$
\begin{aligned}
\sigma & =\frac{1-\sqrt{5}}{2} \\
\mathrm{~F}_{\mathrm{n}} & =\frac{\tau^{\mathrm{n}}-\sigma^{\mathrm{n}}}{\tau-\sigma}
\end{aligned}
$$

and we also know that

- $\quad L_{n}=\tau^{n}+\sigma^{n}$,
- $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{L_{n+1}}{L_{n}}=\tau$ and
- $\quad \lim _{n \rightarrow \infty} \frac{L_{n}}{F_{n}}=\sqrt{5}$.

The Pell numbers P_{n} and Q_{n} are defined as

$$
\begin{gathered}
P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2}(n \geq 2) \\
Q_{0}=0, Q_{1}=1, Q_{n}=2 Q_{n-1}+Q_{n-2}(n \geq 2)
\end{gathered}
$$

which are also known as generalized Fibonacci numbers.

Proposition 1: If

$$
\alpha=1+\sqrt{2}, \beta=1-\sqrt{2}
$$

are the roots of $x^{2}-2 x-1=0$, then Pell numbers can be expressed as

$$
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}}, Q_{n}=\frac{\alpha^{n}+\beta^{n}}{2} \text { for } n \geq 0
$$

Proof: If α and β are the roots of $x^{2}-2 x-1=0$, so the results are obtained.

Proposition 2: For the Pell numbers when $\mathrm{n} \geq 1$, we have the following relations:

- $\quad P_{2 n}=2 P_{n} Q_{n}$
- $P_{n}+P_{n-1}=Q_{n}$
- $2 \mathrm{Q}_{\mathrm{n}}^{2}-\mathrm{Q}_{2 \mathrm{n}}=(-1)^{\mathrm{n}+1}$
- $P_{n}+P_{n+1}+P_{n+3}=3 P_{n+2}$ and
- $\mathrm{Q}_{\mathrm{n}}^{2}-2 \mathrm{P}_{\mathrm{n}}^{2}=(-1)^{\mathrm{n}}$
so $\frac{Q_{n}}{P_{n}}$ is convergent of the continued fraction expansion of $\sqrt{2}$ of the Pell equation $x^{2}-2 y^{2}=1$.

Proof: From the proposition 1; two question arises

- Is $\sum_{n=1}^{\infty} \frac{1}{\mathrm{p}_{\mathrm{n}}^{\mathrm{k}}}$ irrational for $\mathrm{k} \geq 1$?
- Is $\sum_{n=1}^{\infty} \frac{1}{\mathrm{Q}_{\mathrm{n}}^{\mathrm{k}}}$ irrational for $\mathrm{k} \geq 1$?

The behavior of $\zeta_{q}(\mathbf{2})$: For $|q|<1$, defined q-derivative as:

$$
\left(\frac{\mathrm{d}}{\mathrm{~d}_{\mathrm{q}} \mathrm{x}}\right) \mathrm{f}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{qx})}{(1-\mathrm{q}) \mathrm{x}}
$$

For $\mathrm{x} \in \mathbb{R}$, defined q -integral as

$$
\int_{0}^{x} f(t) d_{q} t=(1-q) \sum_{k=0}^{\infty} f\left(q^{k} x\right) q^{k} x
$$

Note that

$$
\begin{gathered}
\int_{0}^{x}\left(\frac{d}{d_{q} x}\right) f(t) d_{q} t=f(x) \\
\int_{0}^{q x} f^{\prime}(t) d_{q} t=f(q x)
\end{gathered}
$$

and

$$
\mathrm{q} \int_{0}^{1} \int_{0}^{1} \frac{\mathrm{x}^{\mathrm{r}} \mathrm{y}^{\mathrm{r}}}{1-\mathrm{qxy}} \mathrm{~d}_{\mathrm{q}} \mathrm{xd}{ }_{\mathrm{q}} \mathrm{y}=\zeta_{\mathrm{q}}(2)-\sum_{\mathrm{k}=1}^{\mathrm{r}} \frac{\mathrm{q}^{\mathrm{k}}}{[\mathrm{k}]^{2}}
$$

if $\mathrm{r}=\mathrm{s}$,

$$
=\frac{\mathrm{q}^{-s}}{\mathrm{r}-\mathrm{s}} \sum_{\mathrm{m}=\mathrm{s}+1}^{\mathrm{r}} \frac{1}{[\mathrm{~m}]}
$$

if $r \neq s$, where

$$
\mathrm{r}, \mathrm{~s} \in \mathbb{Z}_{+},[\mathrm{x}]=\frac{1-\mathrm{q}^{\mathrm{x}}}{1-\mathrm{q}}
$$

and

$$
\zeta_{q}(s)=\frac{(2-s)(1-q)}{s-1} \sum_{n=1}^{\infty} \frac{q^{n}}{[n]^{s-1}}+\sum_{n=1}^{\infty} \frac{q^{n}}{[n]^{s}}
$$

The q-binomial formula is

$$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{y}^{\mathrm{n}-\mathrm{k} \mathrm{x}^{\mathrm{k}}, \mathrm{n} \in \mathrm{Z}_{+} .{ }^{\prime} .}
$$

for

$$
\binom{\mathrm{n}}{\mathrm{k}}=\frac{(\mathrm{q} ; \mathrm{q})_{\mathrm{n}}}{(\mathrm{q} ; q)_{k}(\mathrm{q} ; q)_{\mathrm{n}-\mathrm{k}}},(\mathrm{x} ; \mathrm{q})_{\mathrm{n}}=(1-q x) \cdots \cdots\left(1-q^{\mathrm{n}-1} x\right)
$$

Thus

$$
\left(q^{-n} x ; q\right)_{n}=\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)}{(q ; q)_{k}} x^{k}
$$

Let

$$
P_{n q}(x)=\frac{1}{[n]!}\left(\frac{d}{d_{q} x}\right)^{n}\left(x^{n}\left(q^{-n+1} x ; q\right)_{n}\right)
$$

and

$$
I_{n q}=q \int_{0}^{1} \int_{0}^{1} \frac{(1-y)^{n}}{1-q x y} P_{n q}(x) d_{q} x d_{q} y
$$

It is easy to see that

$$
\int_{0}^{x} f(t)\left(\frac{d}{d_{q} t}\right) g(t) d_{q} t=f(x) g(x)-\int_{0}^{x} f(t) g(q t) d_{q} t
$$

$$
\left(\frac{d}{d_{q} x}\right)^{n}\left(\frac{1}{1-q x y}\right)=n!y^{n} q^{n}\left(\frac{1}{\sum_{i=1}^{n+1}\left(1-x y q^{i}\right)}\right)=\frac{n!y^{n} q^{n}}{(x y q ; q)_{n+1}}
$$

$$
\int_{0}^{x} \frac{P_{n q}(x)}{1-q x y} d_{q} x=(-1)^{n} n!y^{n} q^{n} \int_{0}^{1} \frac{\left(q^{n} x\right)^{n}(q x ; q)_{n}}{(x y q ; q)_{n+1}} d_{q} x
$$

Finally we get

$$
I_{n q}=q^{n^{2}+n+1}(-1)^{n} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(q x ; q)_{n} y^{n}(1-y)^{n}}{(q x y ; q)_{n+1}} d_{q} x d_{q} y
$$

Let

$$
\mathrm{d}_{\mathrm{n}}(\mathrm{q})=\ell \mathrm{cm}\left\{1-\mathrm{q}, 1-\mathrm{q}^{2}, \cdots \cdots, 1-\mathrm{q}^{\mathrm{n}}\right\}
$$

Then

$$
d_{n}^{2}(q) q^{\frac{n^{2}-n}{2}} I_{n}(q)=d_{n}^{2}(q) A_{n}(q) \zeta_{q}(2)-B_{n}(q)
$$

where

$$
A_{n}(q), B_{n}(q) \in Z[q]
$$

for

$$
\mathrm{q}=\frac{1}{\mathrm{~b}}(\mathrm{~b}(>2) \in \mathrm{Z})
$$

$$
\begin{gathered}
A_{n}=b^{n^{2}+n+\frac{3 n^{2}}{\pi^{2}+\frac{n(n-1)}{2}} A_{n}(q) d_{n}^{2}(q)} \\
B_{n}=b^{n^{2}+n+\frac{3}{\pi^{2}} n^{2}+\frac{n(n-1)}{2}} B_{n}(q)
\end{gathered}
$$

As $A_{n}, B_{n} \in \mathbb{Z}$ then

$$
\begin{aligned}
\left|A_{n} \zeta(2)-B_{n}\right| & =d_{n}^{2}(q) q^{\frac{n^{2}-n}{2}} I_{n}(q) b^{n^{2}+n+\frac{3}{\pi^{2}} n^{2}+\frac{n(n-1)}{2}} \\
& \leq M \cdot q^{\frac{n^{2}-n}{2}} b^{n^{2}+n+\frac{3}{\pi^{2}} n^{2}+\frac{n(n-1)}{2}} q^{\frac{n(n-1)}{2}+n^{2} n+1} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

REFERENCES

1. Duverney, D., 1993. Proprietes arithmetiques d'ume serie liee aux functions theui. Acta arithmetica, 64: (2) 175-188.
2. Kono, Y. and T. Uehara, 1998. A congruence relation for generalized Fibonacci numbers and its formal-group-law interpretation. Rep. Fac. Sci. Engrg. Saga Univ. Math., 1: 26-27.
3. Matala-Aho, T. and K. Vananen, 1998. On approximation measure of q-logarithms. Bull. Auster. Math. Soc. 58: 15-31.
4. Shiokara, I., 1998. Rational approximation to the Rogers-Ramanujan continued fractions. Acta Arithmetica, 50: 25-30.
5. Willimum, J.L., 1990. Elementary theory of numbers. Univ of Michigan (Dover Publications Inc.), New York.

Hence $\zeta_{q}(2)$ is irrational.

