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INTRODUCTION

Let A be the class of functions of the form

( ) n
n

n 2

f z z a z
∞

=

= +∑ (1.1)

analytic in the open unit disk E = {z: |z|<1}. If ƒ(z) and 
g(z) are analytic in E, we say that ƒ(z) is subordinate to 
g(z), written f g  or ( ) ( )f z g z  if there exists a

Schwarz function w(z) in E such that ƒ(z) = g(w(z)). 
In [1], Janowski  introduced the class P[A,B]. For -

1≤B<A≤1, a function p(z), analytic in E with p(0) = 1 
belongs to the class P[A,B] if p(z) is subordinate to 
1 Az
1 Bz
+
+

. Later Noor [2] generalize this concept to define 

the class Pk[A,B] as follows.
An analytic function p(z) is said to be in the class 

Pk[A,B], if and only if,

( ) ( ) ( )1 2
k 1 k 1p z p z p z
4 2 4 2

   = + − −      
(1.2)

where p1(z), p2(z)∈P[A,B], -1≤B<A≤1, k≥2. It is clear 
that P2[A,B] ≡ P[A,B] and Pk[1,-1] ≡ Pk, the well-
known class given and studied by Pinchuk [3].

By using all these concepts, we consider the
following classes.
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g zT A,B
g z R 1, 1 , z E
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where -1≤B<A≤1, k≥2. These classes were studied by 
Noor [2, 4, 5].
For any two analytic functions

( ) ( ) ( )n n
n n

n 0 n 0

f z a z , and g z a z z E
∞ ∞

= =

= = ∈∑ ∑

the convolution (Hadamard product) of ƒ(z) and g(z) is 
defined by

( )( ) ( )n
n n

n 0

f g z a b z z E
∞

=

∗ = ∈∑

Let H (a,b,c;z) be the hypergeometric function define as 
follows.

( ) ( ) ( )
( )

2a a 1 b b 1ab z z
H a,b,c;z 1 , z E

c 1 c c 1 2
+ +

= + + + ∈
+

 (1.3)

where the value of a,b,c is not equal to 0, -1, -2,…,. We 
note that the series (1.3) converge absolutely for all 
z∈E so that it represents an analytic function in E. For 
the applications of the hypergeometric type polynomial 
[6-15].

We consider the Integral operator Iλ(a,b,c): A→A
define by 

( ) ( ) ( )( ) ( )1
I a,b,c f z H a,b,c;z f z , z E

−

λ = ∗ ∈ (1.4)

where a,b,c are real and greater than zero and
(H(a,b,c;z))−1 is given by 

( ) ( )( )
( )

1

1

z
H a,b,c;z H a,b,c;z , z E

1 z
−

λ+∗ = ∈
−
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The  operator  Iλ(a,b,c)  was  discussed  by  Noor 
[16]   and   known   as   generalized   integral  operator. 
In  particular,  with  b = 1, this  operator  was  studied 
in  [17]  for  p-valent  functions  and  for  a = n+p, b = 
c, λ = 1, [18].
By some computation, we note that 

( ) ( ) n
n

n 2

I a,b,c f z z A z , z E
∞

λ
=

= + ∈∑
With

( ) ( )
( ) ( )

n 1 n 1
n n

n 1 n 1

1 c
A a

a b
− −

− −

λ +
= (1.5)

where (ρ)n is a Pochhammar symbol given as

( ) ( ) ( )n

1 ,n 0
1 n 1 , n

=ρ = ρ ρ + ρ + − ∈  

From (1.4), we note that 

( ) ( ) ( ) ( ) ( ) ( )0 1I a,1,a f z f z , I a,1,a f z zf z′= =

Also the following identities can easily be established.

( ) ( ) ( ) ( ) ( )
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λ + λ

λ

λ + = λ
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(1.6)
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λ
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We now define the following classes by using the 
operator Iλ(a,b,c).

Definition 1.1: A function ƒ(z)∈A is in the class 
( )kR a,b,c,A,B ,λ if and only if

( ) ( )( )
( ) ( ) [ ]k

z I a,b,c f z
P A , B , z E

I a,b,c f z
λ

λ

′
∈ ∈ (1.8)

where a,b,c are greater than zero and λ>-1.

Definition 1.2: A function ƒ(z)∈A is in the class 
( )kT a,b,c,A,B ,λ  if and only if, there exists

( ) ( )2g z R a,b,c,1, 1 ,λ∈ −  such that 

( ) ( )( )
( ) ( ) [ ]k

z I a,b,c f z
P A , B , z E

I a,b,c g z
λ

λ

′
∈ ∈ (1.9)

where a,b,c are greater than zero and λ>-1.
By giving specific values to k,λ,a,b,c,A,B in
( )kR a,b,c,A,Bλ  and ( )kT a,b,c,A,B ,λ  we obtain many 

important subclasses studied by various authors in 
earlier papers [2,4,5,19,20]. 

From (1.8) and (1.9), we note that 

( ) ( ) ( ) [ ]k kf z R a,b,c,A,B I a,b,c R A,Bλ
λ∈ ⇔ ∈

and
( ) ( ) ( ) [ ]k kf z T a,b,c,A,B I a,b,c T A,Bλ

λ∈ ⇔ ∈

Throughout   in    this    article    we    assume   that 
-1≤B<A≤1,  k≥2, λ>-1  and  a,b,c is not equal to 0, -1,
-2,…,  unless otherwise mentioned. 

PRELIMINARY LEMMA

In order to derive our main results, we need the 
following Lemma.

Lemma 2.1: [21]. Let h(z) be convex in the open unit 
disk E and let Q : E →  with Re Q(z)>0. If p(z) is 
analytic in E, then 

( ) ( ) ( ) ( )p z Q z zp z h z′+ 

implies that
( ) ( )p z h z

MAIN RESULTS

Theorem 3.1: Let ( ) ( )kf z R a,b,c,A,Bλ∈  and ƒ(z)  is of 
the form (1.1).  Then 

( ) ( ) ( )

( ) ( ) ( )
n 1 n 1

n 1
n

n 1 n 1

k A B
a b

2
a , n 2

c n 1 ! 1

− −
−
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 
 ≤ ∀ ≥

− λ +
(3.1)

This result is sharp.

Proof: Let ( ) ( )kf z R a,b,c,A,Bλ∈  and set 

( ) ( )( )
( ) ( )

( )
z I a,b,c f z

p z
I a,b,c f z
λ

λ

′
= (3.2)

where p(z) is analytic in E with p(0) = 1. Let

( ) n
n

n 1

p z 1 b z , z E
∞

=

= + ∈∑
Then (3.2) becomes
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n n n
n n n
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Equation coefficients of zn, we have

( )
n 1

n n j j
j 1

n 1 A A b
−

−
=

− = ∑

Using the coefficients estimates ( )
n

k A B
b

2
−

≤ for

the class Pk[A,B], we have 

( ) ( )
n 1

n n j
j 1

2 n 1 A k A B A
−

−
=

− = − ∑

By using mathematical induction, we have 

( )

( )
n 1

n

k A B
2

A , n 2
n 1 !

−

 − 
 
 ≤ ∀ ≥

−

and hence by using (1.5), we obtain (3.1).
The equality occurs for the function ƒ0(z) given by

( ) ( )( )
( ) ( )

0

0

z I a,b,c f z k 1 1 Az k 1 1 Az
I a,b,c f z 4 2 1 Bz 4 2 1 Bz
λ

λ

′ + −   = + − −   + −   

Theorem 3.2: For λ≥0 and a,b,c greater than zero 

( ) ( ) ( )1
k k kR a,b,c,A,B R a,b,c,A,B R a 1,b,c,A,Bλ+ λ λ⊂ ⊂ +

Proof: Let ( ) ( )kf z R a,b,c,A,Bλ∈  and set 

( ) ( )( )
( ) ( ) ( )

( ) ( )1 2

z I a,b,c f z
p z

I a,b,c f z

k 1 k 1p z p z
4 2 4 2

λ

λ
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=
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(3.3)

where p(z) is analytic in E with p(0) = 1. Then by 
simple computation together with the identity (1.6), we 
have

( ) ( )( )
( ) ( )

( ) ( )
( )

1z I a,b,c f z z p z
p z

I a,b,c f z p z
λ+

λ

′ ′
= +

+ λ

and since ( ) ( )kf z R a,b,c,A,Bλ∈  it follows that 

( ) ( )
( ) [ ]k

zp z
p z P A,B

p z
′

+ ∈
+ λ

(3.4)

Define a function 

( )
( )2

z 1 z
z

11 z 1 1 z
λ

λ
φ = +

λ + − λ + −

Using the same convolution technique as used by 
Noor [22] of φλ(z) with (3.3), we have:

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1
1

1

2
2

2

z p z z p zk 1
p z p z

p z 4 2 p z

zp zk 1
p z

4 2 p z

 ′ ′ + = + +   ′+ λ + λ  
 ′ − − +   ′ + λ  

By using (3.4), we see that 

( ) ( )
( ) [ ]i

i
i

zp z
p z P A,B

p z
 ′ + ∈ + λ  

for i = 1,2. Now by using (3.3) and Lemma 2.1, we 
obtain that

( ) ( )1
k kR a,b,c,A,B R a,b,c,A,Bλ+ λ⊂

and by similar lines we have 

( ) ( )k kR a,b,c,A,B R a 1,b,c,A,Bλ λ⊂ +

For a function ƒ(z) analytic in E, we consider the 
integral operator

( ) ( )( ) ( )
z

0

1
F z I f z t f t dt, 1

z
γ

γ γ

γ +
= = γ > −∫ (3.5)

The operator Iγ(γ∈N), was introduced by Bernadi 
[23]. In particular, the operator I1, was studied earlier 
by Libra [24] and Livingston [25].

Theorem 3.3: If ( ) ( )kf z R a,b,c,A,B ,λ∈  then so does 
F(z), where F(z) is given by (3.5).

Proof: From (3.5), we have 

( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 I a,b,c f z I a,b,c f z

z I a,b,c f z

λ λ

λ

γ + = γ

′+
(3.6)

Let

( ) ( )( )
( ) ( )

( )
z I a,b,c F z

p z
I a,b,c F z
λ

λ

′
=

where p(z) is analytic in E with p(0) = 1. Then by using 
(3.6), we have
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( ) ( )( )
( ) ( )

( ) ( )
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1z I a,b,c f z z p z
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I a,b,c f z p z
λ+

λ
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+ γ

and since ( ) ( )kf z R a,b,c,A,B ,λ∈  it follows that

( ) ( )
( ) [ ]k

z p z
p z P A,B

p z
′

+ ∈
+ γ

(3.7)

Let

( )
( )2

z 1 z
z

11 z 1 1 z
γ

γ
φ = +

γ + − γ + −

Then by convolution of φr(z), we have

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1
1

1

2
2

2

z p z z p zk 1
p z p z

p z 4 2 p z

z p zk 1
p z

4 2 p z

 ′ ′ + = + +   ′+ γ + γ  
 ′ − − +   ′ + γ  

Using (3.7), we see that 

( ) ( )
( ) [ ]i

i
i

zp z
p z P A,B

p z
 ′ + ∈ + γ  

for i = 1,2. Now by using Lemma 2.1, we have
pi(z)∈P[A,B] and hence p(z)∈Pk[A,B]. This completes 
the proof.

Theorem 3.4: Let ( ) ( )kf z T a,b,c,A,Bλ∈  and ƒ(z) is of 

the form (1.1). Then

( ) ( ) ( )( )( )
( ) ( )

n 1 n 1
n

n 1 n 1

a b k A B n 1 4
a , n 2

4 c 1
− −

− −

− − +
≤ ∀ ≥

λ +

This result is sharp.

Proof: From the definition of the class ( )kT a,b,c,A,B ,λ

it follows that there exist a function g(z) such that 
Iλ(a,b,c)g(z)  belongs to the class S* of starlike
functions. Let us denote

( ) ( ) n
n

n 2

I a,b,c g z z c z , z E
∞

λ
=

= + ∈∑
and

( ) ( )( )
( ) ( )

n
n

n 1

z I a,b,c f z
1 b z

I a,b,c g z

∞
λ

=λ

′
= +∑ (3.8)

Equating the coefficients of the power series in 
(3.8), we find from (1.5) that 

( ) ( )
( ) ( )

n 1
n 1 n 1

n n n j j
j 1n 1 n 1

n 1 c
a c c b

a b

−
− −

−
=− −

λ +
= +∑ (3.9)

It is well known that the coefficients bounds for the 

class S* and Pk[A,B] are |cn|≤n, ( )
n

k A B
b

2
−

≤  for all 

n≥2. Therefore (3.9) implies 

( ) ( )
( ) ( )

( ) ( ) ( )n 1 n 1
n

n 1 n 1

n 1 c k A B
a n n 1 n 2 2 1

a b 2
− −

− −

λ + −
 ≤ + − + − + + + 

( ) ( )n n 1 k A B
n , n 2

2 2
− −

= + ∀ ≥

and thus we obtain the desired result.
The equality occurs for the function ƒ0(z) given by

( ) ( )( ) ( ) ( )( ) ( )0 0 kz I a,b,c f z I a,b,c g z p zλ λ
′ =

where

( ) ( ) n
0

n 2

I a,b,c g z z n z
∞

λ
=

= +∑
and

( ) ( ) n
k

n 1

1p z 1 k A B z
2

∞

=

= + −∑

Using the same procedure as that of Theorem 3.2 
and Theorem 3.3, we can easily prove the following 
results.

Theorem 3.5: For λ≥0 and a,b,c greater than zero 

( ) ( ) ( )1
k k kT a,b,c,A,B T a,b,c,A,B T a 1,b,c,A,Bλ + λ λ⊂ ⊂ +

Theorem 3.6: If ( ) ( )kf z T a,b,c,A,B ,λ∈  then the

function ( ) ( )kF z T a,b,c,A,B ,λ∈  where F(z) is given by 
(3.5).
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