
World Applied Sciences Journal 12 (12): 2189-2196, 2011
ISSN 1818-4952
© IDOSI Publications, 2011

Corresponding Author: Dr. Syed Tauseef Mohyud-Din, Ege University, Department of Mathematics, 35100 Bornova-Izmir,
Turkey

2189

On Whitham-Broer-Kaup Equations
1Syed Tauseef Mohyud-Din, 2Ahmet Yildirim and 3Muhammad Usman

1HITEC University Taxila Cantt, Pakistan
2Department of Mathematics, University of Dayton, Dayton, Oh, USA

3Ege University, Department of Mathematics, 35100 Bornova, Izmir, Turkey

Abstract: In this paper, we apply and compare modified Variational Iteration Methods (VIMAP) to find 
travelling wave solutions of Whitham-Broer-Kaup (WBK) equations. The proposed modifications are made 
by introducing Adomian’s and He’s polynomials in the correction functional of the VIM. The use of 
Lagrange multiplier coupled with He’s polynomials explicitly reveal a clear edge over the coupling with 
Adomian’s polynomials. Numerical results explicitly reveal the reliability of proposed algorithms.
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INTRODUCTION

The rapid growth of nonlinear sciences [1-26]
witnesses a reasnable number of new and modified 
versions of some traditional algorithms. He [9-13]
developed the Variational Iteration (VIM) and
Homotopy Perturbation (HPM) methods which are
highly suitable for the problems arising in nonlinear 
sciences. G. Adomian [1] proposed decomposition
method which was appropriatly modied by Wazwaz
[24-26]. In these methods the solution is given in an 
infinite series usually converging to an accurate
solution  [2-13, 15-17, 19-23] and the references
therein. The  basic  motivation  of  this  work  is  to 
apply  the  Variational Iteration  Method  (VIM) 
coupled  with  Adomian’s polynomials (VIMAP) to 
find travelling wave solutions of Whitham-Broer-Kaup
(WBK)  equations  [22]  which  arise  quite  frequently 
in  mathematical  physics,  nonlinear  sciences  and  is
of the form

t x x xxu u u v u 0+ + + β = (1)

t x xxx xxv (uv) u v 0+ + α − β =

where the field of horizontal velocity is represented by
u = u(x, t), ν = ν(x, t) is the height that deviate from 
equilibrium position of liquid and α, β are constants
which represent different diffusion power. This idea has 
been used first by Abbasbandy [2, 3] to solve quadratic 

Riccati differential equation and Klein-Gordon equation 
and subsequently by Noor and Mohyud-Din [16, 17, 
19] for finding solutions of a large number of singular
and nonsingular initial and boundary value problems. In 
this method the correction functional is developed [1, 2, 
16, 17, 19] and the Lagrange multipliers are calculated 
optimally via variational theory. The Adomian’s
polynomials for the nonlinear terms are introduced in 
the correction functional and can be calculated
according to the specific algorithms set in [24-26]. It is 
shown that the proposed VIMAP provides the solution 
in a rapid convergent series with easily computable 
components. Moreover, we have also compared our 
results with another modified version of variational
iteration method [24] where He’s polynomials are used. 
It is observed that both the techniques are compatible 
but the modifiaction based upon He’s oilynomials is 
easier to handle and is more user friendly. Numerical 
results explicitly reveal the complete reliability of the 
proposed algorithms. 

VARIATIONAL ITERATION METHOD (VIM)

To illustrate the basic concept of the technique, we 
consider the following general differential equation

Lu Nu g(x)+ = (1)

where L is a linear operator, N a nonlinear operator and 
g(x)   is   the   forcing   term.  According  to  variational
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iteration method [2-13, 15-17, 19-24], we can construct 
a correct functional as follows

x

n 1 n n n
0

u (x) u (x) ( L u( s ) N u ( s ) g(s))ds+ = + λ + −∫  (2)

where λ is a Lagrange multiplier [2-13, 15-17, 19-23],
which can be identified optimally via variational
iteration method. The subscripts n denote the nth
approximation, nu  is considered as a restricted
variation. i.e. nu 0δ = ; (2) is called a correction
functional. The solution of the linear problems can be 
solved in a single iteration step due to the exact
identification of the Lagrange multiplier. The principles 
of  variational  iteration  method  and  its applicability 
for various kinds of differential equations are given in 
[2-13, 15-17, 19-23]. In this method, it is required first 
to determine the Lagrange multiplier λ optimally. The 
successive approximation un+1, n≥0 of the solution u 
will be readily obtained upon using the determined 
Lagrange multiplier and any selective function u0,
consequently, the solution is given by nn

u limu .
→∞

=

ADOMIAN’S DECOMPOSITION 
METHOD (ADM)

Consider the differential equation [24-26].

Lu R u Nu g+ + = (3)

where L is the highest-order derivative which is
assumed to be invertible, R is a linear differential
operator of order lesser order than L, Nu represents the 
nonlinear terms and g is the source term. Applying the 
inverse operator L−1 to both sides of (3) and using the 
given conditions, we obtain

1 1u f L (Ru) L (Nu)− −= − −

where the function f represents the terms arising from 
integrating the source term g and by using the given 
conditions. Adomian’s decomposition method [33-35]
defines the solution u(x) by the series

n
n 0

u(x) u ( x )
∞

=

=∑

where the components un(x) are usually determined 
recurrently by using the relation

0

1 1
k 1 k k

u f

u L ( R u ) L ( N u ), k 0− −
+

=

= − ≥

The nonlinear operator F(u) can be decomposed 
into an infinite series of polynomials given by

n
n 0

F(u) A
∞

=

=∑

where An are the so-called Adomian’s polynomials that 
can be generated for various classes of nonlinearities 
according to the specific algorithm developed in [33-
35] which yields

( )
n n

i
n in

i 0 0

1 d
A F u , n 0,1,2,

n! d = λ =

   = λ =     λ     
∑ 

For further details about the Adomian’s
decomposition method [33-35] and the references
therein.

VARIATIONAL ITERATION METHOD USING 
ADOMIAN’S POLYNOMIALS (VIMAP)

To illustrate the basic concept of the proposed 
VIMAP, we consider the following general differential 
equation (4)

Lu Nu g(x)+ = (4)

where L is a linear operator, N a nonlinear operator and 
g(x) is the forcing term. According to variational
iteration method [1-3, 5-11, 16-30], we can construct a 
correct functional as follows

x

n 1 n n n
0

u (x) u (x) ( L u( s ) N u ( s ) g(s))ds+ = + λ + −∫  (5)

where λ is a Lagrange multiplier [5-11], which can be 
identified optimally via variational iteration method.
The subscripts n denote the nth approximation, nu  is 
considered as a restricted variation. i.e. nu 0;δ =  (5) is 
called as a correct functional. We define the solution u 
(x) by the series

i
i 0

u(x) u (x )
∞

=

=∑

and the nonlinear term

n 0 1 2 i
n 0

N(u) A ( u , u , u , ..., u )
∞

=

=∑

where An are the so-called Adomian’s polynomials and 
can be generated for all type of nonlinearities according 
to the algorithm developed in [33-35] which yields the 
following

( )( )
n

n 0n

1 d
A F u

n! d λ =

  = λ   λ   
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Hence, we obtain

t

n 1 n n n
n 00

u (x) u (x) ( L u ( x ) A g(x))dx
∞

+
=

= + λ + −∑∫ (6)

which is the variational iteration method using
Adomian’s polynomials (VIMAP) and is formulated by 
the elegant coupling of variational iteration method and 
the so-called Adomian’s polynomials.

SOLUTION PROCEDURE

Consider Whitham-Broer-Kaup (WBK) equation
(1) with initial conditions

2 2u(x,0) 2Bkcoth(k ),v(x,0) 2B(B ) k csch (k )=λ− ξ =− +β ξ (5)

where
2

0 0B and x x and x ,k,= α+ β ξ = + λ

are arbitrary constants. Applying Variational Iteration Method (VIM) on (1, 5). The correction functional is given by 

( )

t 2
n n n n

n 1 n 2
0

t 3 2
2 2 n n n

n 1 n n 3 2x
0

u u v uu (x,t) 2Bkcoth(k ) (s) u ds
s x x x

v u v
v (x,t) 2B(B ) k c s c h ( k ) (s) u v ds

s x x

+

+

  ∂ ∂ ∂ ∂= λ − ξ + λ + + + β  
∂ ∂ ∂ ∂  


 ∂ ∂ ∂ = − + β ξ + λ + + α − β  ∂ ∂ ∂ 

∫

∫

  

  

Making the correction functional stationary, the Lagrange multipliers are identifird as λ(s) = -1, consequently

( )

t 2
n n n n

n 1 n 2
0

t 3 2
2 2 n n n

n 1 n n 3 2x
0

u u v uu (x,t) 2Bkcoth(k ) u ds
s x x x

v u v
v (x,t) 2B(B ) k csch ( k ) u v ds

s x x

+

+

  ∂ ∂ ∂ ∂= λ − ξ − + + +β  
∂ ∂ ∂ ∂  


 ∂ ∂ ∂ = − + β ξ − + + α − β  ∂ ∂ ∂ 

∫

∫

Applying variational itertaion method using Adomian’s polynomials (VIMAP), we get 

t 2
n n n

n 1 n 2
n 0 n 0 n 00

t 3 2
2 2 n n n

n 1 n 3 2
n 0 n 0 n 00

u v u
u (x,t) 2Bkcoth(k ) A ds

s x x

v u v
v (x,t) 2B(B ) k c s c h ( k ) B ds

s x x

∞ ∞ ∞

+
= = =

∞ ∞ ∞

+
= = =

  ∂ ∂ ∂
= λ − ξ − + + + β   ∂ ∂ ∂  


 ∂ ∂ ∂ = − + β ξ − + + α −β   ∂ ∂ ∂ 

∑ ∑ ∑∫

∑ ∑ ∑∫

where An and Bn are the Adomian’s polynomials which can be evaluated by using specific algorithm developed in 
[24-26]. Consequently, following approximants are obtained 

{ 2 2
0 0u (x,t) 2Bkcoth(k ), v 2B(B )k csch (k )= λ − ξ = − +β ξ

2 2
1 0

2 2 2 2
1

2 4 4
0

u (x , t ) 2Bkcoth(k ) 2Bk tcsch (k(x x ))

v 2B(B )k csch (k ) 2B(B ) k t ( 2Bkcoth(k ))csch ( k )
4B( B ) k t ( 2 cosh(2k(x x )))csch (k )

 = λ − ξ − λ +
 = − + β ξ − + β −λ+ ξ ξ
 − α + β + β + + ξ

3 2
5 2 2 2 2 2 2 2 2 2

2

2 2 2

2 2
6 3 2 2 2 4

2

Bk t
u csch (k )(( 44 k 44B k 44 k B )cosh(k ) (4 k 4B k 4 k B

2
)cosh(3k ) ( 6 B k 6B k 6Bk 6 k )sinh(k ) ( 2 B k 2B k 2Bk 2 k )sinh(3k )

Bk tv csch (k )(4Bk 4B k 528 k 528B
8

= ξ − α − β − β − λ − βλ + λ ξ − α + β + β − λ

−βλ+λ ξ − + β − λ − β λ ξ − + β − λ − β λ ξ

= ξ + β − αβ − 2 4 3 4 2 2 2 2 2 2 2

2 4 2 4 3 4 2 2 2 2 2 2 2 2

3 2 2 2 4 2 4 3 4 2 2 2 2 2 2

k 528 k 12 k 8 B k 16B k 24 k 3B

3 (416 k 416B k 416 k 8 k 8 B k 8B k 16 k 4B 4 )cosh(2k )
(4Bk 4B k 16 k 16B k 16 k 4 k cosh(4k ) 8B k 8 k B )

β − β − α λ + λ − β λ − β λ − λ

− βλ − αβ + β + β − α λ + λ − β λ − β λ − λ − βλ ξ

− + β + αβ + β + β − α λ ξ + β λ − β λ + λ +βλ
3 2 3 2 3 2 3 3 2 3 2 3 2

3

cosh(4k )

(32 Bk 112B k 112B k 8B k 8B k 80 k )sinh(2k ) (8 Bk 16B k 16B k 4 B k
4B k 8 k )sinh(4k ))










 ξ

− α + β + β + λ + β λ + α λ ξ − α + β + β − λ
− β λ + α λ ξ
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Hence, the closed form solutions are given as

u(x,t) 2Bkcoth(k( t))= λ − ξ − λ (6)

2 2v(x,t) 2B(B )k csch (k( t))= − +β ξ − λ (7)

where 2B= α + β and ξ = x+x0 and x0,k,λ are arbitrary 
constants. As a special case, if α = 1 and β = 0, WBK 
equations can be reduced to the Modified Boussinesq 
(MB) equations.We shall second consider the initial 
conditions of the MB equations

u(x,0) 2kcoth(k )= λ − ξ

2 2v(x,0) 2k csch (k )= − ξ (8)

where ξ = x+x0 being arbitrary constant. Procedding as 
before, we obtain exact solution as follows

u(x,t) 2kcoth(k t)= λ − ξ − λ

2 2v(x,t) 2k csch ( k t)= − ξ − λ

where k, λ are constants to be determined and x0 is an 
arbitrary constant. In the last example, if α = 0 and 
β1/2, WBK equations can be reduced to the
Approximate  Long  Wave  (ALW)  equation in shallow

water. We can compute the ALW equation with the 
initial conditions

u(x,0) kcoth(k )= λ − ξ

2 2v(x,0) k csch (k )= − ξ

where k is constant to be determined and ξ = x+x0.
Procedding as before, we obtain exact solution as
follows

u(x,t) kcoth(k t)= λ − ξ − λ

2 2v(x,t) 2k csch ( k t)= − ξ − λ

where   k, λ  are   constants   to   be   determined   and 
ξ = x+x0, x0 is an arbitrary constant. In order to verify 
numerically whether the proposed methodology lead to 
higher accuracy, we evaluate the numerical solutions 
using the n-term approximation. Table 1-3 show the 
difference of analytical solution and numerical solution 
of the absolute error. We achieved a very good
approximation with the actual solution of the equations 
by using 5 terms only of the proposed VIMAP. 

Now, we shall apply another modified version of 
Variational Ietraion Method (VIMHP) which is the
coupling of correction functional of VIM and He’s 
polynomials. Applying modified Variational Itertaion
Method (MVIM), we get 

( )
t

0 1 0 1
0 1 0 1

0

t 2 2
0 1 0 1

2 2
0

t
2 2 0 1

0 1
0

u u u u
u pu 2Bkcoth(k ) p p u pu p ds

s s x x

v v u up p p ds
x x x x

v v
v pv 2B(B ) k csch (k ) p p u

s s

 ∂ ∂ ∂ ∂   + + = λ − ξ − + + + + + + +    ∂ ∂ ∂ ∂    
  ∂ ∂ ∂ ∂ − + + + β + +    ∂ ∂ ∂ ∂    

∂ ∂ + + = − + β ξ − + + + ∂ ∂ 

∫

∫

∫

   

 

  ( ) ( )0 1 0 1 x

t 3 3 2 2
0 1 0 1

3 3 2 2
0

pu v pv ds

u u v vp p p ds
x x x x










  + + + +   
     ∂ ∂ ∂ ∂ − α + + −β + +     ∂ ∂ ∂ ∂     

∫

 

 

Comparing the co-efficient of like powers of p, consequently, following approximants are obtained 

0(0)
2 2

0

u (x,t) 2Bkcoth(k )
p :

v 2B(B )k csch (k )

= λ − ξ


= − + β ξ

2 2
1 0

(1) 2 2 2 2
1

2 4 4
0

u (x,t) 2Bkcoth(k ) 2Bk tcsch (k(x x ))

p : v 2B(B )k csch (k ) 2B(B )k t( 2Bkcoth(k ))csch (k )
4B( B )k t(2 cosh(2k(x x )))csch (k )

 = λ − ξ − λ +
 = − +β ξ − + β −λ+ ξ ξ
 − α + β+β + + ξ



World Appl. Sci. J., 12 (12): 2189-2196, 2011

2193

Table 1: The numerical results for φn(x,t) and ϕn(x,t) in comparison with the exact solution for u(x,t) and ν(x,t) when k = 0.1, λ = 0.005, α = 1.5, 
β  = 1.5 and x0 = 10, for the approximate solution of the WBK equation

t i/xi 0.1 0.2 0.3 0.4 0.5

|u-φn|
0.1 1.04892E-04 4.25408E-04 9.71992E-04 1.75596E-03 2.79519E-03
0.3 9.64474E-05 3.91098E-04 8.93309E-04 1.61430E-03 2.56714E-03
0.5 8.88312E-05 3.60161E-04 8.22452E-04 1.48578E-03 2.36184E-03

|ν-ϕn|
0.1 6.41419E-03 1.33181E-03 2.07641E-02 2.88100E-02 3.75193E-02
0.3 5.99783E-03 1.24441E-02 1.93852E-02 2.68724E-02 3.49617E-02
0.5 5.61507E-03 1.16416E-02 1.81209E-02 2.50985E-02 3.26239E-02

Table 2: The  numerical  results  for φn(x,t)  and ϕn(x,t) in comparison with the analytical solution for u(x,t) and ν(x,t) when k = 0.1, λ = 0.005, 
α = 1, β  = 0 and x0 = 10, for the approximate solution of the MB equation

t i/xi 0.1 0.2 0.3 0.4 0.5

|u-φn|
0.1 8.16297E-07 3.26243E-06 7.33445E-06 1.30286E-05 2.03415E-05
0.3 7.64245E-07 3.05458E-06 6.86758E-06 1.22000E-05 1.90489E-05
0.5 7.16083E-07 2.86226E-06 6.43557E-06 1.14333E-05 1.78528E-05

|ν-ϕn|
0.1 5.88676E-05 1.18213E-04 1.78041E-04 2.38356E-04 2.99162E-04
0.3 5.56914E-05 1.11833E-04 1.68429E-04 2.25483E-04 2.83001E-04
0.5 5.27169E-05 1.05858E-04 1.59428E-04 2.13430E-04 2.67868E-04

Table 3:The numerical  results  for φn(x,t)  and ϕn(x,t) in comparison  with  the  analytical  solution for u(x,t) and ν(x,t) when k = 0.1, λ = 0.005, 
α = 0, β  = 0.5 and x0 = 10, for the approximate solution of the ALW equation

t i/xi 0.1 0.2 0.3 0.4 0.5

|u-φn|
0.1 8.02989E-06 3.23228E-05 7.32051E-05 1.31032E-04 2.06186E-04
0.3 7.38281E-06 2.97172E-05 6.73006E-05 1.20455E-04 1.89528E-04
0.5 6.79923E-06 2.73673E-05 6.19760E-05 1.10919E-04 1.74510E-04

|ν-ϕn|
0.1 4.81902E-04 9.76644E-04 1.48482E-03 2.00705E-03 2.54396E-03
0.3 4.50818E-04 9.13502E-04 1.38858E-03 1.87661E-03 2.37815E-03
0.5 4.22221E-04 8.55426E-04 1.30009E-03 1.75670E-03 2.22578E-03

3 2
5 2 2 2 2 2

2

2 2 2 2 2 2

2

2 2
6 3 2 2 2 4

2
(2)

Bk tu csch (k )(( 44 k 44B k 44 k B )cosh(k )
2

(4 k 4B k 4 k B )cosh(3k ) (6Bk 6B k 6Bk 6 k )sinh(k )

( 2 B k 2B k 2Bk 2 k )sinh(3k )
Bk t

v csch (k )(4Bk 4B k 528 k
8

p :

= ξ − α − β − β − λ −β λ + λ ξ

− α + β + β − λ −β λ + λ ξ − + β − λ − β λ ξ

− + β − λ − β λ ξ

= ξ + β − αβ 2 4 3 4 2 2 2

2 2 2 2 2 4 2 4 3 4 2 2 2

2 2 2 2 2 3 2 2 2 4 2 4 3 4

2 2 2 2 2

528B k 528 k 12 k 8 B k

16B k 24 k 3B 3 (416 k 416B k 416 k 8 k 8 B k

8B k 16 k 4B 4 )cosh(2k ) ( 4 B k 4B k 16 k 16B k 16 k
4 k cosh(4k ) 8B k 8 k B

− β − β − α λ + λ

− β λ − β λ − λ − βλ − αβ + β + β − α λ + λ

− β λ − β λ − λ − βλ ξ − + β + αβ + β + β

− α λ ξ + β λ − β λ + λ 2 3 2 3 2 3

2 3 3 2 3 2 3

2 3

)cosh(4k ) (32 Bk 112B k 112B k

8 B k 8B k 80 k )sinh(2k ) (8 Bk 16B k 16B k
4B k 4B k 8 k )sinh(4k ))















+βλ ξ − α + β + β
+ λ + β λ + α λ ξ − α + β + β
− λ − β λ + α λ ξ
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                                                 (a)                                                                                     (b)
Fig. 1: The surface shows the solution u(x, t) when k = 0.1, λ = 0.005, α = 1, β = 0 and  x0 = 10 (a) exact solution (b) 

approximate solution 

                                                  (a)                                                                                     (b)
Fig. 2: The surface shows the solution v(x, t) when k = 0.1, λ = 0.005, α = 1, β = 0 and  x0 = 10 (a) exact solution (b) 

approximate solution 

                                                  (a)                                        (b)
Fig. 3: The surface shows the solution u(x, t) when k = 0.1, λ = 0.005, α = 0, β = 0.5 and  x0 = 20 (a) exact solution 
(b) approximate solution 

            (a)                                                                             (b)
Fig. 4: The surface shows the solution v(x, t) when k = 0.1, λ = 0.005, α = 0, β = 0.5 and  x0 = 20 (a) exact solution 

(b) approximate solution 
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Hence, the closed form solutions are given as

u(x,t) 2Bkcoth(k( t))= λ − ξ − λ (9)

2 2v(x,t) 2B(B )k csch (k( t))= − +β ξ − λ (10)

where 2B= α + β  and ξ = x+x0 and x0, k, λ are
arbitrary  constants.  As  a  special  case,  if α = 1 and 
β = 0, WBK equations can be reduced to the Modified 
Boussinesq (MB) equations.We shall second consider 
the initial conditions of the MB equations

u(x,0) 2kcoth(k )= λ − ξ

2 2v(x,0) 2k csch (k )= − ξ (11)

where ξ = x+x0 being arbitrary constant. Procedding as 
before, we obtain exact solution as follows

u(x,t) 2kcoth(k t)= λ − ξ − λ

2 2v(x,t) 2k csch ( k t)= − ξ − λ

where k,λ are constants to be determined and x0 is an 
arbitrary constant. In the last example, if α = 0 and β = 
1/2, WBK equations can be reduced to the Approximate 
Long Wave (ALW) equation in shallow water. We can 
compute the ALW equation with the initial conditions

u(x,0) kcoth(k )= λ − ξ

2 2v(x,0) k csch (k )= − ξ

where  k  is  constant  to  be  determined and ξ = x+x0.
It is quite clear that (6, 7, 8) are fully compatible with 
(9, 10, 11). Procedding as before, we obtain exact
solution as follows

u(x,t) kcoth(k t)= λ − ξ − λ

2 2v(x,t) 2k csch ( k t)= − ξ − λ

CONCLUSION

In this paper, we applied variational iteration
method using Adomian’s polynomials (VIMAP) and 
compared our results with another modified version 
(VIMHP) where He’s polynomials are used instead of 
Adomian’s polynomials. to find travelling wave
solutions of Whitham-Broer-Kaup (WBK) equation. It 
is observed that both the versions are fully compatible 

but the modification based on He’s polynomials
(VIMHP) is more user friendly as compare to VIMAP..
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