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Abstract: In this paper, the estimation of Fuzzy Linear Regression (FLR) is computed by using least-
square approach. For using this approach, a solution of Fuzzy Linear System (FLS) is required. This 
solution is computed by applying an iterative method (Huang’s Algorithm) which this alternative method is 
powerful to compute the solutions without using the inverse of coefficient matrix. Experimental results are 
then presented which indicate the performance of this algorithm.

Key words: Fuzzy linear system • iterative methods • linear regression • least square • triangular fuzzy 
number

INTRODUCTION

In last years, the applications of linear regression in 
different fields such as economic, engineering and
social science have been studied. There are many
regression techniques and formulations based on
regression parameters in which some of them have
simple structures and some complicated models can be 
found. Unfortunately, in most of these patterns,
unrealistic approaches may be occurred because of the 
design of model, estimation of parameters and some 
other factors such that the usual regression methods are 
not fitting with the natural sources of problems. Thus 
the concept of fuzzy regression analysis was introduced 
by Tanaka et al. [20] in 1982, where an LP-based
method with symmetric triangular fuzzy parameters
was proposed. Later on, several fuzzy regression
approaches have been proposed, including the
mathematical programming based methods [16, 17, 20], 
least-squares based algorithms [2, 4] and other methods 
[3, 11, 12, 14, 15].

The basic concept of fuzzy theory of fuzzy
regression is that the residuals between estimators and 
observations are not produced by measurement errors, 
but rather by the parameter uncertainty in the model 
and the possibility distribution is used to deal with real 
observations. This method provides the means by which 
the goodness of a relationship between two variables, y 
and x, may be evaluated on the basis of a small sample 
size. In this approach, the regression coefficients are 
assumed to be fuzzy number [18].

In this paper, the estimation of Fuzzy Linear
Regression (FLR) based on least-square approach is 
computed in which the unrealistic approaches are

considered. This method has some more benefits that 
will be mentioned later. This method explicitly does not 
compute the inverse of any square matrix. Thus, this 
method is suggested to apply for computing a
meaningful estimation of a fuzzy linear regression. In 
chapter 2, the basic notations and definitions have been 
discussed. The general structure of fuzzy linear
regression  has  been  argued  in  the  next  chapter  and 
later on, the Huang’s algorithm for solving fuzzy linear 
system of equations is explained in chapter 4.
Numerical tests and conclusion are two last chapters of 
this paper.

BASIC CONCEPTS AND DEFINITIONS

Here, some primary definitions and notes, which 
are needed in this study, have been indicated.

Definition 2.1: The r-level set of a fuzzy set u is
defined as an ordinary set [ ] ru  of which the degree of 
membership function exceeds the level r, i.e.

[ ] ( ) [ ]{ }r r
u u x R u x r , r 0,1= = ∈ ≥ ∈   (2.1)

Definition 2.2: A fuzzy set u , defined on the universal 
set of real number R, is said to be a fuzzy number if its 
membership function has the following characteristics:

• u  is convex i.e. 

( )( ) ( ) ( )( )
[ ]

u 1 2 u 1 u 2 1

2

x 1 x min x , x x ,

x R, 0,1

µ λ + − λ ≥ µ µ ∀

∈ ∀λ∈
   (2.2)
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• u  is normal i.e. ∃x0∈R such that ( )u 0x 1µ = .

• uµ   is piecewise continuous.

Definition 2.3: A fuzzy number u in parametric form is 
a pair ( )u, u of functions u(r), ( )u r , 0≤r≤1, that
satisfies the following requirement:

• ( )u r is a bounded monotonically increasing left 
continuous function;

• ( )u r is a bounded monotonically decreasing left 
continuous function;

• ( ) ( )u r u r ,0 r 1≤ ≤ ≤

Definition 2.4: The addition and scalar multiplication 
of fuzzy numbers are defined by the extension principle 
and can be equivalently represented as follows [9].

For arbitrary ( )u u, u= , ( )v v,v=  and k∈R, the 
addition and the scalar multiplication are defined as 
follows:

• u v=   iff ( ) ( )u r v r=  and ( ) ( )u r v r= ,

• ( )( ) ( ) ( )( ) ( ) ( )( )( )u v r u r v r , u r v r± = ± ±  ,

•
( )
( )
ku,ku (r), k 0

k u
ku,ku (r), k 0

 ≥⊗ = 
<



Remark 2.5: A crisp number α is simply represented 
by

( ) ( )u r u r , 0 r 1= = α ≤ ≤

Definition 2.6: The triangular fuzzy number 

( )1 2 3u u , u , u=

is a fuzzy set where the membership function is as

( )

1
1 2

2 1

3
2 3

3 2

x u
, u x u

u u
u xu x , u x u
u u

0, Otherwise

− ≤ ≤ −
 −= ≤ ≤

−




 (2.3)

and its parametric form is

( ) ( )( )u u r , u r=

( ) ( )2 1 1u r u u r u= − +

( ) ( )3 3 2u r u u u r= − − (2.4)

Definition 2.7: A fuzzy number u  is said to be non-
negative fuzzy number if and only if ( )u x 0= , ∀x<0.

Definition 2.8: A matrix ( )ijA a=  is called a fuzzy

matrix, if each element of A is a fuzzy number. A  is 
positive (negative) and denoted by A 0 ( A 0)> <  if each 

element of A  is positive (negative). Similarly,
nonnegative and nonpositive fuzzy matrices can be 
defined [6].

Proposition 2.9: Let the crisp matrix A is nonnegative 
and x is a nonnegative fuzzy vector then according to 
Principle extension, it is concluded that 

[ ] r r
A x b A x b ⊗ = ⇔ ⊗ =  

    (2.5)

FUZZY LINEAR REGRESSION (FLR)

A general form of FLR is represented by

i i0 0 i1 1 in ny X a X a X a= ⊗ + ⊗ + + ⊗    (3.1)

or in matrix form as

y X a= ⊗  (3.2)

where the vector y  and matrix X  are fuzzy outputs 
and crisp inputs observations, respectively in which 

T
0 1 na [a , a , ,a ]=   

and
[ ]T

0 1 nX X , X , ,X= 

so that 
T

i 1 i 2i n iX X , X , , X =  

is the ith column of cris p coefficients matrix X and ia

is the ith triangular fuzzy variable of a  for i =
0,1,2,…,n.

The fuzzy regression analysis is a powerful tool for 
investigating and predicting data sets by measuring a 
vague concept that contains a degree of ambiguity, 
uncertainty or fuzziness [1, 10]. The main purpose of 
fuzzy regression models is to find the best model with 
the least error. 

In the present study the least-square model, is 
employed  which  minimizes  the sum of squared errors 
in  the  estimated value,  based  on  their  specifications
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[12, 14, 16]. This approach is indeed a fuzzy extension 
of the ordinary least-squares, which obtains the best 
fitting to the data, based on the distance measure under 
fuzzy consideration, applying information included in 
the input-output data set. 

To compute a meaningful estimation for this FLR 
problem, the following theorem gives a good strategy.

Theorem  3.1:  Let  X  be  a  nonnegative crisp n×n
matrix and 

( ) ( )( )y= y r ,y r

is a fuzzy vector. Then a fuzzy vector 

( )T
0 1 na a , a , ,a=   

while
( ) ( )( )j j ja a r , a r=

1≤j≤n, 0≤r≤1, is a solution of X a y⊗ =   iff a  be the 
solution of 

T TX X a X y⊗ = ⊗  .

Proof: It is known that a fuzzy vector 

( ) ( )( )a = a r , a r

is the solution of 
X a y⊗ = 

for any r∈[0,1] iff ( )a r  and ( )a r  satisfy in the
equations

( ) ( )Xa r y r=

and
( ) ( )Xa r y r=

respectively. For simplicity, the parameter r is omitted 
(for example a  is used instead of ( )a r ). Similarly, a  is 
the solution of 

T TX X a X y⊗ = ⊗ 

iff a and a  are the answers of 

T TX X a X y=

and
T TX X a X y=

respectively.

To complete the proof, two below propositions 
should be concluded.

Xa y=  iff T TX X a X y=

Xa y=  iff T TX X a X y=

As the proofs of (i) and (ii) are similar, the
proposition (i) is proved. Now residual vector 

k y Xa= −

is defined and it is denoted as 

( )k a y Xa= −

to emphasize that given X and y, k is a function of a.
Let w be an n-vector. Then 

( ) ( ) ( ) ( )k w y Xw k a Xa Xw k a X a w= − = + − = + −

So

( ) ( ) ( ) ( ) ( )2 2 2T T
2 2 2

k w k a 2 a w X k a X a w= + − + −

First assume that a satisfies in 

( ) ( )T TX Xa r X y r=

so, ( )TX k a 0= .
From the preceding, we have 

( ) ( ) ( ) ( )2 2 2 2

2 2 2
k w k a X a w k a= + − ≥

which implying that a is a least-square solution.
Next assume ( )TX k a 0≠  and set ( )TX k a v= .

Define a vector w such that w = a+cv with an arbitrary 
crisp number c (c>0). Then 

( ) ( ) ( ) ( )k w k a X a w k a cXv= + − = −

( ) ( ) ( )2 2 22 T T
22 2

k w k a c Xv 2cv X k a= + −

( ) ( )2 22 22
2 22 2

k a c Xv 2c v k a+ − <

for sufficiently small value of c. This implies that a is 
not a least-square solution. 

From the above theorem, an ordinary method for 
computing the solution of (3.2) in matrix form is
obtained as follows 
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1a B z−= ⊗   or ( ) ( )1T Ta X X X y
−

= ⊗ ⊗  (3.3)

where B = XTX and Tz X y= ⊗  .
The  matrix XTX  is  called  the information 

matrix, because it  measures the information contained 
in the experiment and the matrix (XTX)-1 is known as 
the  variance-covariance matrix [5]. It can be shown 
that  the  matrix  XTX is positive definite and hence 
non-singular, where the columns of X are linearly
independent. At first, the case that X has full rank is 
discussed such that a normal equation instead of linear 
regression is considered which, in our formulation,
have the form 

T TX X a X y⊗ = ⊗ 

Nevertheless, the matrix XTX is ill-posed and for 
moderate values of n, the solution a  will not be
accurate. Hence, an alternative method is used. By 
using this iterative method, the solution of 

T TA A x A b⊗ = ⊗ 

can be found. In usual, any iterative method can not 
find the optimum solution of this kind of ill-posed
problems. For this reason, the algorithm of Huang,
which is described in the next section, is selected that is 
powerful to solve ill-posed fuzzy linear system of
equations.

Remark 2.6: There always exists a solution to the 
linear least-squares problem ( )z B a= ⊗  . This solution is 
unique iff B has full rank.

SOLVING FUZZY LINEAR SYSTEMS (FLS)

Friedman et al. [9] proposed a general model for 
solving an n×n FLS problem, whose coefficient matrix 
A is crisp and right-hand side column b  is a triangular 
fuzzy vector, by the embedding approach. So, for
solving the following FLS equations 

A x b⊗ =  (4.2)

at first, the system (4.2) is converted to the following 
2n×2n crisp function linear system

SX Y= (4.3)

described in below. Assume an 2n×2n matrix S = (sij) is 
obtained as:

ij ij ij i m , j n ij

ij i , j n ij i m , j ij

a 0 s a , s a
a 0 s a , s a

+ +

+ +

≥ ⇒ = =
 < ⇒ = − = −

(4.4)

and  each  sij which is not determined by (4.4) is zero. 
An  approximate  solution  of  (4.2) (that is often used), 
is the least square solution of (4.3), defined as a vector 
X which minimizes the Euclidean norm of (Y-SX).
Now, by setting 

[ ]T
1 2 2nS s , s , , s= 

the procedures of Huang’s method [13] for computing 
the fuzzy solution is described in below. 

Huang’s Algorithm

1. Let X1∈R2n is arbitrary vector and set H1 = I 
∈R2n×2n and i = 1.

2. Compute the direction vector pi as pi = Hisi.
3. Update the approximation iterate by i 1 i i iX X p+ = − α

where αi is given by ( )T T
i i i i i is X y / s pα = − .

4. If i = 2n stop (Xi+1 is the solution); otherwise 
Update  the  matrix  Hi by ( )T T

i 1 i i i i iH H p p /s p+ = − set

i = i+1 and go to 2.

Definition 4.1: Let 

( ) ( )( ){ }j jx x r , x r ,1 j n= ≤ ≤

denotes the unique solution of equation (4.3). The
triangular fuzzy vector 

( ) ( )( ){ }j jU u r , u r ,1 j n= ≤ ≤

defined by

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

j j j j

j j j j

u r min x r , x r ,x 1

u r max x r , x r ,x 1

=

=
(4.5)

is called the fuzzy solution of equation (4.3).

Theorem 4.2: Consider the Huang’s algorithm with the 
following choice of X1,

k

1 j j
j 1

X s
=

= β∑

with k<2n and some scalars βj, then for i≥k, Xi+1 is a 
vector with minimal Euclidean norm.
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Table 1: Numerical results of example 1.Here, the fuzzy iterates ( )i i1 i 2x x , x=    are showed in triangular forms separately

Iterate ( ) ( )i i i i
1 1 1 1x a , b , c= ( ) ( )i i i i

2 2 2 2x a , b , c=

1 1 1 0 0 0 1
2 0 0.50 0 0 0 0
3 0.21 0.74 0 1.263 1.421 -0.263
4 0.70 1.10 3.100 1.100 1.200 0.700
5 1.375 2 3.875 0.875 1 1.375

Proof: Refer to [7].

Theorem 4.3: The vector X2 generated by the Huang’s 
algorithm is the minimal Euclidean (vector) norm iff 
X1 = βs1 for some arbitrary scalar β.

Proof: Refer to [7].

NUMERICAL TESTS

Here, we want to test the mentioned algorithms by 
some popular examples. At first, one well-known FLS 
equations is solved by Huang’s algorithm and later on, 
one FLR problem which is obtained from a geology 
study is tested. The computed results and graphs of 
triangular fuzzy numbers have been showed at the end 
of each test.

Example 1: Consider the 2×2 FLS problem

( )
( )

1 2

1 2

x x r,2 r

x 3x 4 r,7 2r

− = −

+ = + −

 

 
(5.1)

To solve the above problem by Huang algorithm 
we have

( )
( )

r,2 r1 1
A ,b

4 r,7 2r1 3
 −− 

= =     + −   


So
1 0 0 1 r
1 3 0 0 4 r

S ,Y
0 1 1 0 r 2
0 0 1 3 2r 7

   
   +   = =
   −
   

−   

(5.2)

This algorithm has been started with the
supposition X1 = s1. The exact solution of this linear 
system has been computed after 5 iterations that the 
numerical results are showed in below Table 1.

The computed answers of this problem is indicated 
in below

( )1x 1.375 , 2 , 3.875= , ( )2x 0.875 , 1 , 1.375=

Fig. 1: The graphs of triangular fuzzy solutions of (5.1)

The optimum triangular fuzzy solutions of (5.1)
have been illustrated in two below figures.

The authors also tested this problem to be solved 
by some other methods, for example the proposed 
methods of [8, 9]. The computed results showed that 
the new method is more powerful to solve such
problems.

Example 2: The following geology data is a study
about the effect x:SAR Sodium absorption rate) on 
y:PSE (percent of Sodium exchange) in Silakhor region 
of Lorestan province of Iran in 2001 [19]. Due to
unconcluded with sufficient accuracy in measurements 
of PSE, the observations related to variable y are
ambiguous. It is reasonable to find an optimum model 
for relation of PSE parameters based on SAR data. For 
this aim, an FLR problem has been considered.

To examine the applicable of mentioned fuzzy
regression  process   and   to   compute    the best
linear  regression   with   fuzzy   coefficients, at first, 
the matrix X = (l, x i1)  is set such that  the  n -vector  l is 
as l = [1,1,…1]T.
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Table 2: Inputs of example 2 which xi1 is crisp and iy  is triangular fuzzy number

i xi1 ( )i i i iy y , z , w= i xi1 ( )i i i iy y , z , w=

1 0.87 3.08 0.31 0.31 13 0.71 5.23 0.52 0.52
2 0.64 2.86 0.29 0.29 14 0.50 5.16 0.52 0.52
3 0.62 6.25 0.63 0.63 15 0.77 11.10 1.11 1.11
4 0.49 4.11 0.41 0.41 16 0.99 4.47 0.45 0.45
5 1.10 1.04 0.10 0.10 17 3.56 28.84 2.88 2.88
6 0.61 2.71 0.27 0.27 18 0.86 9.43 0.94 0.94
7 0.74 4.45 0.45 0.45 19 0.61 4.50 0.45 0.45
8 1.15 6.92 0.69 0.69 20 0.64 9.30 0.94 0.94
9 1.08 7.41 0.74 0.74 21 0.71 9.48 0.95 0.95
10 0.38 9.08 0.91 0.91 22 0.61 3.65 0.37 0.37
11 0.61 6.56 0.66 0.66 23 0.63 10.14 1.01 1.01
12 0.98 5.05 0.51 0.51 24 1.13 3.00 0.30 0.30

Fig. 2: The graphs of triangular fuzzy solutions of
example 2

Huang's algorithm for computing the best
estimation for this FLR problem has been applied. By 
computing B = XTX and Tz X y= ⊗  the system of
equations B a z⊗ =  is obtained such that the solution a
is a triangular fuzzy vector. Thus, this system is solved 
by Huang’s Algorithm to compute the best estimation 
of fuzzy regression that the numerical results are
showed as follows.
Then the computed regression parameters are as

( )0a 0.74356 , 0.8209 , 0.9062=

( )1a 6.1817 ,6.8660 , 7.5504 =

and the linear estimation is as follows

( ) ( )i1y 0.74356, 0.8209, 0.9062 X 6.1817,6.8660, 7.5504= ⊕ ⊗

The corresponding graphs for computed results 
have been showed in below.

CONCLUSION

Fuzzy linear regression is a useful technique for 
fitting  the  data  which  many  implementations  for 
finding  the  best  estimators  of  FLR  problems have 
been proposed. In this study, fuzzy linear regression 
based  on  least-squares  approaches  has been 
considered  that  a  fuzzy  linear system, obtained by 
this  approach,  is  required  to  be  solved. Usually 
these linear systems are ill-posed which most of
alternative solvers can not compute a meaningful
estimation  but  Huang’s  algorithm  is  a  good
iterative  method  that  reaches  to  the  solutions 
quickly.  Numerical  results  certify  that  this  method 
is useful. Then Huang’s Algorithm is suggested to be 
used for computing the estimations of FLR and ill-
posed FLS problems. 
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