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Abstract: In this paper, Homotopy Perturbation Method (HPM) is applied to solve the Cauchy problem 
arising in one dimensional nonlinear thermoelasticity. The comparison of the numerical solutions obtained 
by HPM with the exact solution shows the efficiency of this method.
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INTRODUCTION

He [1-3] proposed a perturbation technique,
namely Homotopy Perturbation Method (HPM) which 
does not require the small parameter assumtion and is 
coupled with all the positive features of homotopy and 
perturbation methods. The subsequent work [4-22]
explicitly reveal the complete reliability of this
powerful mathematical tool.The object of this study is 
to employ HPM to solve a real-life problem that
exhibits coupling between the mechanical and thermal 
fields. Let us consider the following nonlinear system 
arising in thermoelasticity [23-25]:

( ) ( ) ( )tt x xx x xu a u , u b u , f x,t− θ + θ θ = (1)

( ) ( ) ( ) ( )x t x xt xxc u , b u , u d g x, tθ θ + θ − θ θ = (2)

subject to the initial conditions of

( ) ( ) ( ) ( ) ( ) ( )0 1 0
tu x,0 u x ,u x,0 u x , x,0 x= = θ = θ (3)

where u (x,t) is the body displacement form equilibrium 
and θ(x,t) is the difference of the body’s temperature 
from a reference T0 = 0, subscripts denote partial
derivatives and a, b, c and d are given smooth
functions. For more details about the physical meaning 
of the model [23, 26]. Recently Ganji et al. [27] used 
Adomian decomposition method for solving the
governing problem.

IMPLEMENTATION OF HPM TO 
THERMOELASTICITY PROBLEM

In order to illustrate the effectiveness of the
method, an artificial model is used. Let us define a, b, c,
d, u0, u1 and θ0 by [25]: 

( ) ( )x x x xa u , 2 u , b u , 2 uθ = − θ θ = + θ

( ) ( )x xc u , 1,d u ,θ = θ = θ (4)

( ) ( ) ( )0 1 0
2 2

1 1
u x ,u x 0, x

1 x 1 x
= = θ =

+ +
(5)

and replace the right-hand side of above equations by:

( ) ( ) ( )
( )

( )

( )
( )

( )

2 2

32 2

22

2 1 t 3x 12f x,t a w,v
1 x 1 x

2x 1 t
b w,v

1 x

+ −
= −

+ +

+
−

+

(6)

( ) ( )
( )

( )

( )( )
( )

( )

22 2

2

32

2 4xt
g x,t c w,v b w ,v

1 x 1 x

2 1 t 3x 1
d v

1 x

= −
+ +

+ −
−

+

(7)

( ) ( )
( )

( )
2

2 22

2 x 1 t 1 t
w w x,t ,v v x,t

1 x1 x

+ +
≡ = − ≡ =

++
(8)

where a, b, c and d are defined by Eq. (4) and the exact 
solution of two equations are given by [25]:

( )
( )

( )
2

2 22

1 t 1 t
u x,t , x,t

1 x1 x

+ +
= θ =

++
(9)

If we put (4) into (1) and (2), then we get:

( ) ( ) ( )tt x xx x xu 2 u u 2 u f x,t 0− − θ + + θ θ − = (10)

( ) ( )t x xt xx2 u u g x,t 0θ + + θ −θθ − = (11)
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and we get

( )tt xx x xx x x xu 2u u u 2 u f x,t 0− + θ + θ + θ θ − = (12)

( )t xt x xt xx2u u u g x,t 0θ + + θ−θθ − = (13)

We construct the following homotopies

{ ( ) }tt xx x xx x x xu p 2u u u 2 u f x,t 0+ − + θ+ θ + θ θ − = (14)

{ ( ) }t xt x xt xxp 2u u u g x,t 0θ + + θ−θθ − = (15)

Assume the solution of Eqs. (14,15) to be in the form:

2 3
0 1 2 3u u pu p u p u ...= + + + + (16)

2 3
0 1 2 3p p p ...θ = θ + θ + θ + θ + (17)

Substituting (16-17) into (14,15) and equating the 
coefficients of like powers p, we get the following set 
of differential equations 

( )
( )

0
0 tt

0 t

p : u 0

0

=

θ =

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
1 0 0 0 0 0tt xx x xx x

0 0 0x x

1 0 0 0 0 0 0t xt x xt xx

p : u 2 u u u 2

u f x,t 0

2 u u u g x,t 0

− + θ + θ

+ θ θ − =

θ + + θ − θ θ − =

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2
2 1 0 0 1 0 1 0t xx x xx x xx

1 0 0 1x xx x

0 1 0 0 0 1x x x x

1 0 0x x

2 1 0 0 1 0 1 0t xt x xt x xt

1 0 0 0 1 1 0x xt xx xx

p : u 2 u u u u u

u u 2

u u

u f x,t 0

2 u u u u u

u u g x,t 0

− + θ + θ

+ θ + θ

+ θ θ + θ θ

+ θ θ − =

θ + + θ + θ

+ θ − θ θ − θ θ − =

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )

3
3 2 1 1 0 0 0 2t xx x xx x xx

0 1 1 1 0 1x xx x xx

2 0 0x xx

3 2 0 0 2 0 1 1t xt x xt x xt

0 2 0 1 0 1 1 1 1x xt x xt x xt

2 0 0 0 2 2 0 1 1x xt xx xx xx

p : u 2 u u u u u

u u u u

u u f x,t 0

2 u u u u u

u u u u u u

u u

g x,t 0

− + θ + θ
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+ θ − θ θ −θ θ − θ θ
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        …

Fig. 1: u(x,t) when t = 0.25 Line: HPM, Point: exact 

Fig. 2: u(x,t) when t = 0.25 Line: HPM, Point: exact

and so on, the rest of the polynomials can be
constructed in a similar manner. With the initial
conditions Eq. (3) gives 

( )0 2

1
u x,t

1 x
=

+
(18)

( )
( )

( ) ( )
( )
( )
( )
( )

7 3 6 2 3 4

5 2 3 4

4 2 3 4 6 8
1 62

3 2 3 4 5 7 9

2 2 4 6 8 10

10t x 3x 14t x x 3x x

42t x x 3x x
1u x,t 35t 1 x 2x 6x 2x 8x 3x

1 0 5 1 x
70t 2x 7x 2 x 6x 4x x

105t 1 5x 10x 10x 5x x

 − + + − +
 
 + + − +
 
 = + + + − − − − +  + − + − − − 
  + + + + + + 

(19)

( )0 2

1
x,t

1 x
θ =

+
(20)
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Fig. 3: Absolute error when t = 0.25

Fig. 4: Absolute error when t = 0.5

Fig. 5: θ(x,t) when t = 0.25 Line: HPM, Point: exact

Fig. 6: θ(x,t) when t = 0.5 Line: HPM, Point: exact

Fig. 7: Absolute error when t = 0.25 

Fig. 8: Absolute error when t = 0.5
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( )
( )

( )
( )
( )

5 2 4 2 3 2 4

2 3 4 5 7
1 52

2 4 6 8

2 4 t x 3 0 tx 10t 1 2x 3x
1

x,t 30t 1 2x 6x 3x 6x 2x
1 5 1 x

15t 1 4x 6x 4x x

 + + + −
 
 θ = + − − − − −
 +  + + + + + 

(21)

Proceeding   in   the  same way,  we   can   obtain
u2 (x,t), θ2(x,t) and higher order approximations. Here, 
the numerical results are evaluated using terms
approximation of the recursive relations.

CONCLUSIONS

In this study, we have successfully applied HPM to 
obtain  an  approximation  of  the  analytic solution of 
the Cauchy problem arising in one dimensional
nonlinear thermoelasticity.  In  this  method, the
solution  is  found  in  the  form  of  a  convergent series 
with  easily  computed  components. The results
obtained by homotopy perturbation method are
compared  with  those of the exact solution, which 
shows  very  good agreement, even using only few 
terms of the recursive relations. In general, this method 
provides  highly  accurate  numerical  solutions and can 
be applied to wide class of nonlinear problems.
Homotopy perturbation method does not require small 
parameters which are needed by perturbation method. 
Also the method avoids linearization and physically 
unrealistic assumptions.
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