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and Nonlinear System of Partial Differential Equations

1Majid Khan, 1Muhammad Asif Gondal and 2Sunil Kumar

1Department of Sciences and Humanities, 
National University of Computer and Emerging Sciences Islamabad, Pakistan

2Department of Applied Mathematics, Institute of Technology Banaras, Hindu University, India

Abstract: In this paper, a Homotopy Perturbation Transform Algorithm (HPTA) which is based on the 
Homotopy Perturbation Method (HPM) is introduced for the approximate solution of the linear and 
nonlinear system of partial differential equations. Illustrative examples are included to demonstrate the high 
accuracy and fast convergence of proposed new algorithm.
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INTRODUCTION

System of partial differential equations have
attracted much attention in a variety of applied
sciences. The  general  ideas  and  the  essential features 
of these system are of wide applicability. These system 
were formally derived to describe wave propagation,  to
control  the  shallow  water  waves  and to examine the 
chemical  reaction-diffusion  model  of  Brusselator. 
The method of characteristics, the Riemann invariants, 
Adomian decomposition method [1], Homotopy
perturbation method [2-5], Homotopy analysis method 
[6, 7] and Laplace decomposition method [8-10], were 
the commonly used methods. In this work, we will use 
Homotopy perturbation transform algorithm introduced 
by Yasir et al. [11, 12]. Majid et  al.  [13]  solved
exponential  stretching  sheet  equation  with  the  help
HPTA  on  semi  infinite  domian. This new algorithm 
basically illustrates how two powerful algorithms,
homotopy perturbation method and Laplace
decomposition method  can  be  combined  and  used  to 
approximate the solutions of the nonlinear partial
differential equations by manipulating the homotopy 
perturbation method. 

HOMOTOPY PERTURBATION 
TRANSFORM ALGORITHM

In this section, we present a homotopy perturbation 
transform algorithm for solving system of partial
differential equations written in an operator form

t 1 1 1

t 2 2 2

L u R (u,v) N (u,v) g

L v R (u,v) N (u,v) g

+ + =


 + + =

(2.1)

with the initial conditions

1

2

u(x,0) f ( x )
v(x,0) f ( x )

=
 =

(2.2)

where Lt is consider as a first-order partial differential 
operator, R1,  R2 and N1,  N2 are linear and nonlinear 
operators and g1 and g2 are source terms. The method 
consists of first applying the Laplace transform to both 
sides of equations in system (2.1) and then by using 
initial conditions (2.2), we have 

[ ] [ ] [ ] [ ]t 1 1 1£ L u £ R (u,v) £ N (u,v) £ g+ + = (2.3)

[ ] [ ] [ ] [ ]t 2 2 2£ L v £ R (u,v) £ N (u,v) £ g+ + = (2.4)

Using the differential property of Laplace
transform and initial conditions, we have

[ ] [ ]
[ ] [ ]

1

1 1

s£ u(x,t) u(x,0) £ R(u,v)

£ N (u,v) £ g (x,t)

− +

+ =
(2.5)

[ ] [ ]
[ ] [ ]

2

2 2

s£ v(x,t) v(x,0) £ R (u,v)

£ N (u,v) £ g (x,t)

− +

+ =
(2.6)

On Simplifying
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[ ] [ ] [ ] [ ]1
1 1 1

f ( x ) 1 1 1
£ u £ g £ R (u ,v ) £ N(u ,v)

s s s s
= + − − (2.7)

[ ] [ ] [ ] [ ]2
2 2 2

f (x) 1 1 1
£ v £ g £ R (u,v) £ N (u,v)

s s s s
= + − − (2.8)

Applying inverse Laplace transform on both sides 
of Eqs. (2.7)-(2.8), we get

[ ] [ ]1
1 1 1

1u F(x) £ £ N (u,v) £ R (u,v)
s

−   = − +   
(2.9)

[ ] [ ]1
2 2 2

1v F(x ) £ £ N (u,v) £ R (u,v)
s

−   = − +   
(2.10)

where F1(x) and F2(x) represents the terms arising from 
source terms and prescribe initial conditions. According 
to standard homotopy perturbation method the solution 
u and v can be expanded into infinite series as 

m m
m m

m 0 m 0

u p u , v p v
∞ ∞

= =

= =∑ ∑ (2.11)

where p∈[0,1] is an embedding parameter. Also the 
nonlinear term N1 and N2 can be written as

m
1 1m

m 0

N (u,v) p H (u,v)
∞

=

= ∑                      (2.12)

m
2 2m

m 0

N (u,v) p H (u,v)
∞

=

= ∑

where H1m and H2m are the He's polynomials [11]. By 
substituting Eqs. (2.11) and (2.12) in Eqs. (2.9)- (2.10), 
the solutions can be written as 

[ ] [ ]m 1
m 1 1m 1

m 0

1
p u F(x) p £ £ H £ R (u,v)

s

∞
−

=

   = − +     
∑ (2.13)

[ ] [ ]m 1
m 2 2m 2

m 0

1
p v F ( x ) p £ £ H £ R(u,v)

s

∞
−

=

   = − +     
∑ (2.14)

In Eqs. (2.13)-(2.14), H1m, H2m are He's
polynomials can be generated by several means. Here 
we used the following recursive formulation:

m
i

m 0 m im
i 0 p 0

1
H (u ,...,u ) N p u , m 0,1,2,...

m! p

∞

= =

 ∂  
= =  ∂   

∑ (2.15)

Equating  the  terms  with  identical  powers  in  p 
in Eqs. (2.13)-(2.14), we obtained the following
approximations

[ ] [ ]

[ ] [ ]

0
0 1

1 1
1 10 1 0 0

2 1
2 11 1 1 1

p : u F(x)
1

p : u £ £ H £ R (u , v )
s
1p : u £ £ H £ R ( u , v )
s

−

−

=

  = − +   
  = − +   



 (2.16)

Similarly

[ ] [ ]

[ ] [ ]

0
0 2

1 1
1 20 2 0 0

2 1
2 21 2 1 1

p : v F ( x )
1

p : v £ £ H £ R ( u , v )
s
1p : v £ £ H £ R (u , v )
s

−

−

=

  = − +   
  = − +   



(2.17)

The best approximations for the solutions are 

m 0 1 2p 1
u limu u u u ....

→
= = + + + (2.18)

m 0 1 2p 1
v limv v v v ....

→
= = + + + (2.19)

This method does not resort to linearization or
assumptions of weak nonlinearity, the solution
generated in the form of general solution and it is more 
realistic compared to the method of simplifying the
physical problems.

APPLICATIONS

In this section, we use the HPTA to solve
homogeneous and inhomogeneous linear system of
partial differential equations and homogeneous and
inhomogeneous nonlinear system of partial differential 
equations.

The homogeneous linear system: Consider the
homogeneous linear system of PDEs

t xu v (u v) 0+ − + = (3.1)

t xv u (u v) 0+ − + = (3.2)

with initial conditions 

u(x,0) sinh(x),   v(x,0) cosh(x)= = (3.3)

Applying Laplace transform algorithm we have

[ ] [ ]xsu(x,s) u(x,0) £ v £ (u v)− = − + + (3.4)

[ ] [ ]xsv(x,s) v(x,0) £ u £ (u v)− = − + + (3.5)
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[ ]x
u(x,0) 1

u(x,s) £ v (u v)
s s

= − − + (3.6)

[ ]x
v(x,0) 1

v(x,s) £ u (u v)
s s

= − − + (3.7)

Using given initial condition Eqs. (3.6)-(3.7),
becomes

[ ]x
sinh(x) 1

u(x,s) £ v (u v)
s s

= − − + (3.8)

[ ]x
cosh(x) 1

v(x,s) £ u (u v)
s s

= − − + (3.9)

Applying inverse Laplace transform to Eqs. (3.8)-
(3.9), we get

[ ]1
x

1u(x,t) sinh(x) £ £ v (u v)
s

−  = − − +  
(3.10)

[ ]1
x

1v(x,t) cosh(x) £ £ u (u v)
s

−  = − − +  
(3.11)

The Homotopy Perturbation Transform Algorithm 
(HPTA) assumes a series solutions of the functions 
u(x,t) and v(x,t) is given by

m m
m m

m 0 m 0

u p u (x,t), v p v (x,t)
∞ ∞

= =

= =∑ ∑ (3.12)

Using Eq. (3.12) into Eqs. (3.10)-(3.11), we get

( )m
m 0 m x

m 1
m

m 0 m
m 0 m

m
m 0 m

p v (x,t)
1p u (x,t) sinh(x) p £ £
s

p v (x,t)

p v (x,t)

∞
=

∞
−

= ∞
=

∞
=

   
   
   
   −∑   
   = −    
    + ∑
    
    
     ∑    

∑ (3.13)

( )m
m 0 m x

m 1
m

m 0 m
m 0 m

m
m 0 m

p u (x,t)
1

p v (x,t) cosh(x) p £ £
s

p v (x,t)

p v (x,t)

∞
=

∞
−

= ∞
=

∞
=

   
   
   
   −∑   
   = −    
    + ∑
    
    
     ∑    

∑ (3.14)

From Eqs. (3.9)-(3.12), comparing like powers of p 
yields

0
0

0

 u (x,t) sinh(x)
p :

 v (x,t) cosh(x)

=


 =

(3.15)

1
1

1

 u (x , t ) tsinh(x)
p :

 v (x,t) tcosh(x)

=


 =

(3.16)

2

2

t
2 2!

2

t
2 2!

 u (x,t) sinh(x)
p :

 v (x,t) cosh(x)

 =


 =

(3.17)



and so on for other components. Using Eqs. (2.18)-
(2.19), the series solutions are therefore given by

( ) ( )

( ) ( )

2 4 3 5

2 4 3 5

t t t t
2! 4! 3! 5!

t t t t
2 ! 4! 3! 5!

 u(x,t) sinh(x)1 ... cosh(x) t ...

v(x,t) cosh(x) 1 ... sinh(x) t ...

 = + + + + + + +




= + + + + + + +

(3.18)

using the Taylor expansion for sinht and coxht, we can 
find the exact solutions

 u(x,t) sinh(x t)

v(x,t) cosh(x t)

= +


 = +

(3.19)

The inhomogeneous linear system: Consider the
inhomogeneous linear system 

t xu v (u v) 2− − − = − (3.20)

t xv u (u v) 2+ − − = − (3.21)

with initial conditions

x xu(x,0) 1 e ,    v (x ,0 ) 1 e= + = − + (3.22)

Taking the Laplace transform on both sides of Eqs. 
(3.20)-(3.21), then by using the differentiation property 
of Laplace transform and initial conditions (3.22) gives

[ ]
x

x2

1 e 2 1
u(x,s) £ v (u v)

s s s s
= + − + + − (3.23)

[ ]
x

x2

1 e 2 1
v(x,s) £ ( u v) u

s s s s
= − + − + − − (3.24)

Taking the inverse Laplace transform of both sides 
of the (3.23) and (3.24), we have
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[ ]x 1
x

1u(x,t) 1 e 2t £ £ v (u v)
s

−  = + − + + −  
(3.25)

[ ]x 1
x

1v(x,t) 1 e 2t £ £ ( u v) u
s

−  = − + − + − −  
(3.26)

By using Homotopy Perturbation Transform Algorithm (HPTA) the solutions functions u(x,t) and v(x,t) is given by 

m m
m m

m 0 m 0

u p u (x,t), v p v (x,t)
∞ ∞

= =

= =∑ ∑ (3.27)

Invoking Eq. (3.27) in Eqs. (3.25)-(3.26), we have

( ) ( )m x 1 m m m
m 0 m 0 m 0m m m mx

m 0

1
p u (x,t) 1 e 2t p £ £ p v (x,t) p v (x,t) p v (x,t)

s

∞
− ∞ ∞ ∞

= = =
=

   = + − + + −∑ ∑ ∑     
∑ (3.28)

( ) ( )m x 1 m m m
m 0 m 0 m 0m m m m x

m 0

1
p v (x,t) 1 e 2t p £ £ p v (x,t) p v (x,t) p u (x,t)

s

∞
− ∞ ∞ ∞

= = =
=

   = − + − + − −∑ ∑ ∑     
∑ (3.29)

On comparing the coefficients of like powers of p 
we get require solution components:

x
0

0

x
0

 u ( x , t ) 1 e 2t
p :

 v ( x , t ) 1 e 2t

 = + −


 = − + −

(3.30)

x
1

1

x
1

 u (x,t) te 2t
p :

 v (x , t ) te 2t

 = +


 = − +

(3.31)

2

2

xt
2 2!

2

xt
2 2!

 u (x,t) e
p :

 v (x,t) e

 =


 =

(3.32)

and    so    on   for   other   components.   Using
(2.18)-(2.19),  the  series  solutions  are  therefore
given by

( )

( )

2 3

2 3

x t t
2! 3!

x t t
2! 3!

 u(x,t) 1 e 1 t ...

 v(x,t) 1 e 1 t ...

 = + + + + +




= − + − + − +

(3.33)

that converges to the exact solutions

x t

x t

u(x,t) 1 e

v(x,t) 1 e

+

−

 = +


 = − +

(3.34)

The inhomogeneous nonlinear system: Consider the 
system of inhomogeneous nonlinear partial differential 
equations

t xu u v u 1− − = (3.35)

t xv uv v 1+ + = (3.36)

with initial conditions

x xu(x,0) e ,   v(x,0) e−= = (3.37)

Taking  the  Laplace  transform on both sides of 
Eqs. (3.35)-(3.36), then by using the differentiation
property of Laplace transform and initial conditions 
(3.37) gives

[ ]
x

x2

e 1 1
u(x,s) £ u v u

s s s

−

= + + + (3.38)

[ ]
x

x2

e 1 1
v(x,s) £ uv v

s s s
= + − + (3.39)

Applying inverse Laplace transform of both sides 
of the (3.38) and (3.39), we have

x 1 m
x m

m 0

1
u(x,t) e t £ £ u v p u (x,t)

s

∞
− −

=

  
= + + +  

  
∑ (3.40)

x 1 m
x m

m 0

1
v(x,t) e t £ £ uv p v (x,t)

s

∞
−

=

  
= + − +  

  
∑ (3.41)
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We represent u(x,t) and v(x,t) by the infinite series (2.11) then inserting these series into both sides of Eqs. 
(3.38)-(3.39) yields

m x 1 m m
m 0 m 0m 1m m

m 0

1
p u (x,t) e t p £ £ p H (u,v) p u (x,t)

s

∞
− − ∞ ∞

= =
=

   = + + +∑ ∑     
∑ (3.42)

m x 1 m m
m 0 m 0m 2m m

m 0

1
p v (x,t) e t p £ £ p H (u,v) p v (x,t)

s

∞
− ∞ ∞

= =
=

   = + − +∑ ∑     
∑ (3.43)

where H1m(u,v) and H2m(u,v) are He's polynomials that 
represents nonlinear terms vux and uvx respectively. We 
have a few terms of the He's polynomials for vux and 
uvx, which are given by

10 0 0x

11 1 0x 0 1x

12 2 0x 1 1x 0 2x

H (u,v) v u
H (u,v) v u v u
H (u,v) v u v u v u

=
= +

= + +


(3.44)

20 0 0x

21 1 0x 0 1x

22 2 0x 1 1x 0 2x

H (u,v) u v
H (u,v) u v u v
H (u,v) u v u v u v

=
= +

= + +


(3.45)

Comparing the coefficients of like powers of p, we have

x
0

0

x
0

u ( x , t ) e t
p :

v (x,t) e t

− = +


 = +

(3.46)

2 2

2 2

1 1
1 10 0s

x xt t
2! 2!

1

1 1
1 20 0s

x xt t
2! 2!

u (x,t) £ £[H (u,v) u(x, t) ]

 t te e
p :

v(x , t ) £ £[H (u,v) v (x,t)]

t te e

−

− −

−

 = +  
 = − − + +


 = − +  
 = − − − +

(3.47)

Proceeding in a similar manner, we have

2

2

2 xt
2 2!2

2 xt
2 2!

u (x,t) t e ...
p :

v (x,t) t e ...

− = + +


= + +
(3.48)

Similarly, we can find other components. The
series solutions are therefore given by

( )

( )

2 3

2 3

x t t
2! 3!

x t t
2! 3!

u(x,t) e 1 t ...

v(x,t) e 1 t ...

− = + + + +




= − + − +

(3.49)

By using the Taylor expansion for et and e-t, we can 
find the exact solutions of the above system of
inhomo geneous nonlinear PDES as follows 

x t

x t

u(x,t) e

v(x,t) e

− +

−

 =


 =

(3.50)

CONCLUSION

In this work, a Homotopy perturbation transform 
algorithm which is based on the Homotopy perturbation 
is used to solve linear and nonlinear system of partial 
differential equations. The method presents a useful 
way to develop an analytic treatment for these system. 
The proposed scheme can be applied for system more 
than two linear and nonlinear partial differential
equations with less computational work.
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