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Abstract: In this paper an adaptive inverse dynamics control is applied to control and suppress the micro-
vibrations of a flexible panel. The piezoelectric layers are used as sensors and actuators. Micro-vibrations,
generally defined as low amplitude vibrations at frequencies up to 1 kHz, are now of critical importance in 
a number of areas. One such area is onboard spacecraft carrying sensitive payloads where the micro-
vibrations are caused by the operation of other equipment. A rectangular simply supported flexible panel is 
considered and the equipments are located on it as lumped masses and concentrated forces. The
concentrated loads induce micro-vibrations in the flexible panel. The governing equations of motion are 
derived based on Lagrange-Rayleigh-Ritz method. Finally the controller is applied and the system is 
simulated. Simulation results show the advantages of the adaptive inverse dynamics control algorithm. 
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INTRODUCTION

In recent years, the need to suppress the effects of 
micro -vibrations has increased. This is especially true 
for spacecraft structures where, due to ever increasing 
requirements to protect sensitive payloads, such as
optical instruments or microgravity experiments, there 
is a pressing need to decrease the amplitude of the
induced vibration. 

Han and Lee [1] performed a refined analysis of 
composite plates with distributed piezoelectric actuators 
for vibration control. They used layerwise theory to 
modeling the in plane displacements through the
thickness. Also they formulated the finite element
method based on the developed mechanics. Chee et al.
[2] presented a theoretical formulation for modeling 
composite smart structures, in which the piezoelectric 
actuators and sensors are treated as constituent parts of 
the entire structural system. They developed the
mathematical model for a composite laminated plate
structure using Hamilton`s variational principle with the 
finite element formulation. Amant and Cheng [3]
extended a frequency domain model on the basis of a 
rectangular plate with symmetrically integrated piezo-
elements to time domain suitable to use for online active 
vibration control simulations. Balamurugan and
Narayanan [4] considered the mechanics for the coupled 
analysis of piezolaminated plate and piezolaminated
curvilinear shell structures and their vibration control 
performance. Benjeddou et al. [5] proposed an exact 

two-dimensional analytical solution for the free
vibration analysis of simply-supported piezoelectric
adaptive plates. Mukherjee et al. [6] presented an active 
vibration control of stiffened plates. They formulated the 
stiffened plate finite element with piezoelectric effects. 
Benjeddou et al. [7] presented a two dimensional
closed-form solution for the free vibrations analysis of 
simply supported piezoelectric sandwich plates. Raja et
al. [8] used the piezoelectric actuator layers to suppress 
the vibrations of an aluminum panel. They applied LQR 
controller and simulated the system by using finite
element method. In 2003, Gao and Shen [9] developed 
the incremental finite element equations for geometric 
nonlinear analysis of piezoelectric smart structures using 
a total Lagrange approach and virtual velocity
incremental variational principle. Li and Cheng [10] 
investigated  design  of  a  controller  for  vibration 
control of a plate with piezoelectric patches. Ma [11] 
investigated the dynamic behavior and control of a
clamped rectangular plate with bonded piezoelectric
ceramic patches. He presented an adaptive nonlinear 
control scheme, which introduced a nonlinear function 
into the normal adaptive feedback control to non-
linearize a reference signal. Caruso et al. [12] studied 
the vibration control of an elastic plate, clamped along 
one side and excited by an impulsive transversal force 
acting in correspondence of a free corner. Wang et al.
[13] investigated the dynamic stability of negative
velocity feedback control of piezoelectric composite
plates  using  a  finite  element  model.  Moita et al. [14] 
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presented a finite element formulation for active
vibration control of thin plate laminated structures with 
integrated piezoelectric layers, acting as sensors and 
actuators. Benassi and Elliott [15] investigated strategies
for the suppression of plate vibration by considering 
approximations to the equivalent impedance of power-
minimizing vibration controllers. Sloss et al. [16]
formulated and validated a maximum principle for the 
vibration control of an annulus plate with the control 
forces acting on the boundary. Lin and Nien [17]
investigated  modeling  and  vibration  control  of  a 
smart beam using piezoelectric damping modal
actuators/sensors. Moita et al. [18] studied an active
control to vibration suppression of PZT plates.
Alessandroni et al. [19] presented a dynamic passive 
controller for thin smart plate vibrations. They used a 
four-node first order shear plate element model with 
reduced and selective integration. They also investigated 
geometrically nonlinear transient vibration response and 
control of plates with piezoelectric patches subjected to 
pulse loads. Lin [20] used the piezoelectric actuators to 
actively control the vibrations of smart panels by using a 
decomposed parallel fuzzy control approach. He
demonstrated a general methodology by decomposing a 
large-scale system into smaller subsystems in a parallel 
structure so that the fuzzy control methodology could be 
used for studying a complex system. Moon and Hwang 
[21] applied an optimal control strategy to suppress the 
flutter of a supersonic composite panel using
piezoelectric actuators. They investigated optimal
control design based on the nonlinear model in order to 
obtain the maximum suppressible dynamic pressure
with a lower control input as compared to a controller 
based on the linear model. Heidary and Eslami [22] 
outlined the governing equations of the linear response 
of piezothermoelastic plate based on the Hamilton`s 
principle and finite element methods. Robaldo et al. [23] 
presented some finite elements for the dynamic analysis 
of laminated plates embedding piezoelectric layers
based on the principle of virtual displacements and an 
unified formulation. Moon [24] presented a finite
element formulation of an optimal control scheme based 
on a Linear Quadratic Regulator (LQR) with output
feedback for nonlinear flutter suppression of a
composite panel with piezoelectric actuators and
sensors. Ma and Ghasemi-Nejhad [25] studied vibration 
suppression of smart composite panels with
piezoelectric  patches.  They  extended  the  filtered 
Least Mean Square (LMS) Adaptive Feedforward
Control (AFC) for vibration/noise reduction. To and 
Chen [26] studied optimal random vibration control of 
large-scale complicated shell structures with distributed 
piezoelectric components under nonstationary random 
excitations. Zhang and Shen [27] presented an analytical 

formulation for structural vibration control of laminated 
plates consisting of piezoelectric fiber-reinforced
composite layers and orthotropic composite layers. Lin 
and Nien [28] discussed adaptive modeling and shape 
control of laminated plates with piezoelectric actuators. 
They developed a finite element formulation for
modeling the dynamic and static response of laminated 
plates containing discrete piezoelectric ceramics
subjected to both mechanical and electrical loadings.
Ebrahimi and Rastgo [29] investigated the free vibration 
behavior of thin circular plates with distributed actuator 
layers made of piezoelectric material based on classical 
plate theory. Qiu et al. [30-31] presented acceleration 
sensor-based modal identification and active vibration 
control methods for the first two bending and the first 
two torsional modes vibration of a cantilever plate.
Kapuria et al. [32] presented of an exact two-
dimensional (2D) piezoelasticity solution for free
vibration and steady-state forced response of simply 
supported piezoelectric angle-ply laminated circular
cylindrical panels in cylindrical bending under harmonic 
electromechanical loads, with and without damping.
Tavakol[pur [33] presented an active vibration control 
incorporating active piezoelectric actuator and self-
learning control for a flexible plate structure. Thinh and 
Ngoc [34] developed a finite element model based on 
the first-order shear deformation theory for the static 
flexural shape and vibration control of a glass
fiber/polyester composite plate bounded with
piezoelectric actuator and sensor patches.

In this paper, an adaptive control scheme is
presented to suppress the vibrations of a simply
supported panel with equipments as lumped masses and 
concentrated loads. The piezoelectric layers are used as 
sensors and actuators. The governing equations of the 
system are derived by using the Lagrange-Rayleigh-
Ritz method. The whole system is simulated and the 
results illustrate the effectiveness and capabilities of the 
control scheme.

SYSTEM DYNAMICS

We consider the case of a mass loaded panel with 
piezoelectric layers as sensors and actuators. The
sensors and actuators employed are twin patches of
piezoelectric material bonded onto opposite faces of the 
panel. The Lagrange-Rayleigh-Ritz based procedure
used to model this system is based on Lagrange’s
equations of motion which take the form:

d T T U
( ) Q

dt
∂ ∂ ∂

− + =
∂ψ ∂ψ ∂ψ

(1)

where
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pl lm pzT T T T= + +

pl pzU U U= +

and Q are the kinetic energy, potential energy and the 
vector of generalized forces, respectively. pl, lm and pz 
refer to panel, lumped mass and piezoelectric layers, 
respectively.

The displacement field is described by
multiplication of mode shapes and generalized
coordinates:

m nN N
T

m,n m,n
m 1 n 1

w(x,y,t) S (x,y) (t) s
= =

= ψ = ψ∑∑ (2)

Herein, w(x,y,t) is displacement and s and ψ are
the vectors of mode shapes and generalized coordinates, 
respectively. The generalized forces are:

fN
j T

i j f
ij 1

w
Q F S f

=

∂
= =

∂ψ∑ (3)

where f is vector of external forces and Sƒ is the vector 
of mode shapes at the corresponding force locations. By 
considering the kinetic energy as TT 1 2 M= ψ ψ  , the
mass matrices are obtained as follows.

pz

j

j

lm

j j j

T
pl

pl

N
T

pz pz
i 1 pz

N
T

lm lm lm lm
i 1

M ss dxdydz

M ss dxdydz

M M s s

=

=

= ρ

= ρ

=

∫ ∫ ∫

∑∫ ∫ ∫

∑

(4)

wherein Npz and Nlm are the number of piezoelectric 
layers and lumped masses, respectively. The subscribes 
pzi  and  lmi  mean the ith piezoelectric layer and 
lumped  mass,  respectively.  The  potential  energy  of 
the panel is 

T T
pl

Vol

1 1
U .dxdydz K

2 2
= ε σ = ψ ψ∫∫∫ (5)

where ε is the strain vector and σ is the stress vector of 
the panel. By substituting the strain and stress vector in 
(5), the panel stiffness matrix will be obtained as
follows

2 2 2 T 2 2 Tpl
pl 2 2 2 2

pl
2 2 T 2 2 T

2 2

E z s s s s
K (

(1 ) x x y y

s s s s2 2(1 ) )dxdydz
x y x yx y

∂ ∂ ∂ ∂
= + +

− υ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂υ + − υ
∂ ∂ ∂ ∂∂ ∂

∫∫∫
(6)

Epl and υ, in (6) are the Young's modulus and Poisson's 
ratio of the panel, respectively. The potential energy of 
the piezoelectric layers is composed of mechanical and 
electrical terms:

elast elastelec elecpz pz pz pzU U U U= + + (7)

where
elastpzU  is the energy stored due to the elasticity 

of the material,
elastelecpzU  represents the additional

energy due to voltage-driven piezoelectric effect and 

elecpzU  is the electric energy stored due to the dielectric 
characteristics of the piezoelectric material employed. 
To compute the elastic energy, an appropriate model for 
the stress-strain pattern in the piezoelectric patches
must be selected and here we make the following
assumptions: (i) The electrodes attached to the
piezoelectric patches have negligible stiffness. (ii) The 
thickness of the layer of adhesive which connects each 
of the patches to the panel is negligible compared to 
that of the patches and is able to transfer all of the shear 
strain. (iii) The natural boundary conditions at the edges 
of each patch are not enforced and a uniform strain 
distribution is assumed through the whole patch.
Considering these assumptions, the same procedure as 
employed for the panel can be used to write:

i
elast

i i

2 2 2 T 2 2 Tpz
pz 2 2 2 2

ipz pz

2 2 T 2 2 T

i i2 2

E z s s s sK (
(1 ) x x y y

s s s s2 2(1 ) )dxdydz.
x y x yx y

∂ ∂ ∂ ∂
= + +

− υ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
υ + − υ

∂ ∂ ∂ ∂∂ ∂

∑∫∫∫
(8)

The electric field is e = ν/hpz, where ν  is the
applied voltage and hpz is the piezoelectric thickness. 
The stress due to the applied voltages is given by:

elect

elect

x xz yzpz
elect 2

y yz xx

d vdE
e

d vd1 v

σ +   
 σ = =    σ +−   

(9)

Here, dxz and dyz are the piezoelectric constants of the 
material, which are assumed to have polling direction z
perpendicular to the plate. By using equation (9) one 
may write the elastoelectric energy stored in the
piezoelectric layers as:
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elastelect elastelect

p

i i
elastelect

i

T
pz pz

N 2 T 2 Tpz z i
pz 2 2pz ii 1

U V K

E d p s s
K (z z )dxdydz,

2(1 v ) x y=

= ψ

∂ ∂
= +

− ∂ ∂∑∫∫∫
(10)

where dxz and dyz are considered to be the same and are 
equal to

ixd . The electrical energy stored in the

piezoelectric material can be expressed as:

elecpz
pz

1
U e.d.dxdydz

2
= ∫∫∫ (11)

where d is the electrical displacement. For each patch, 
the electrical displacement is [35]:

i
i

i pz
pz

v
d

h
= ε (12)

herein
ipzε is the dielectric constant of the piezoelectric 

material which forms  the ith patch. Hence, the electrical 
energy will be:

elect

P

elect i

i

T
pz

N
T

pz pz i i
i 1 pz

1
U V K V,

2

K p p dxdydz
=

=

= ε∑∫∫∫
(13)

where pi is a zero entries vector except for entry i which 
is equal to 1/hpz.Substituting (3-13) in (1) the governing 
equation of motion of the system will be obtained as:

elast elastelect

electelastelect

T
pl pz lm pl pz pz

pzpz

(M M M ) (K K ) K V Q

K K V 0

+ + ψ + + ψ + =

ψ + =


(14)

The elastoelectric stiffness matrix can be divided 
into two parts corresponding to sensors and actuators.

elastelec elastelec elastelecpz pza pzsK [K , K ]= (15)

where νa and νs are the vectors of the voltages applied 
to the actuators and received from the sensors,
respectively. Eq. (14) can be rewritten as:

elastelect
T T

s elast pzs pza a fM C (K K ) K v s fψ + ψ + + ψ = − +  (16)

wherein all inertia elements are included in the inertia 
matrix, M and all stiffness elements in the stiffness 
matrix,  Kelast and Cs is the  damping  matrix  that can be 

added to the system. Kpzs shows the elastic energy 
stored in the piezoelectric sensors and is as follows

elastelect elec elastelect
T 1

pzs pzs pzs pzsK K K K−= − (17)

ADAPTIVE INVERSE DYNAMICS CONTROL

Controllers that can handle regulation and tracking 
problems without the need of knowledge of the process 
parameters are by themselves appealing procedure.
Such controller schemes belong to the class of adaptive 
control. Equation (16) is linear in dynamic parameters
and can be written as [36]:

sM C K Yψ + ψ + ψ = ρ  (18)

where Y  is  a  known  matrix  of  the  measurable 
variables and ρ  is the vector of parameters of the 
system and elast pzsK K K= + . The control input can be 
determined by:

elastelectpza a d D P s
ˆˆ ˆK v M( K K ) C K− = ψ − ψ − ψ + ψ + ψ    (19)

We assume here that M̂ , sĈ  and K̂  have the same 

form as M, CS and K with estimated parameters ρ̂ .
Taking advantage of (18) we can write the following 
equation.

elastelectpza a
ˆK v Y− = ρ (20)

Substituting (19) into the governing equations of 
the system gives the following closed-loop error
equation

D PM̂( K K ) Yψ + ψ + ψ = ρ     (21)

where desired( ) ( ) ( )⋅ = ⋅ − ⋅  and

ˆˆ ˆY (M M) (C C) (K K)ρ = − ψ+ − ψ + − ψ   (22)

The error dynamics of (21) can be rewritten as

1
D P ˆK K M Y−ψ + ψ + ψ = ρ=Φρ      (23)

This equation can be transformed to state-space
form by choosing

T T T
1 2 1 2, , ( )ξ = ψ ξ = ψ ξ = ξ ξ  , i.e.,

A Bξ = ξ + Φρ  (24)
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with

P D

0 I 0
A ,B

K K I
   

= =   − −   
(25)

By choosing the Lyapunov function as 

T TV P= ξ ξ + ρ Γρ  (26)

where P is the unique symmetric positive definite
solution to the equation TA P PA Q+ = − , for a given 
symmetric positive definite matrix Q. Tacking the time 
derivative of V yields

T T T T ˆV Q 2 ( B P )=−ξ ξ + ρ Φ ξ+Γρ (27)

Choosing the update law as

1 T Tˆ B P−ρ = − Γ Φ ξ (28)

equation (27) will be reduced to the following

TV Q= − ξ ξ (29)

It can be shown that ξ∈L2∩L∞, ˆ L∞ρ ∈  and then 
the control input νa in (19) is bounded. It follows that 

L∞ψ∈  so that L∞ξ ∈ . Then ξ is uniformly continuous 
and, since ξ∈L2, it can be concluded that ξ
asymptotically converges to zero.

SIMULATION RESULTS

The parameters of the panel and piezoelectric
layers are summarized in Table 1. The panel is
considered as simply supported where a harmonic
concentrated load and a lump mass are applied to it. 
The location of lump mass and the point force has been 
considered as (0.0508, 0.1524) and (0.2, 0.1),
respectively. In order to measure the ability of the
controller, two cases are simulated and in both of them 
the controller gains are similar. First, the point force is 
considered as f=sin(pt/10). Figure 1 shows the panel 
vibration in t=0.7s when no voltages are applied to the 
actuators. If voltages are applied to the actuators the 
vibration of the panel will be damped. Figure 2 shows 
the vibration of the panel in t=0.7s when controller are 
applied to the panel. Figure 4 and 5 show the vibration 
of the location of point force and lump mass,
respectively. The effects of controller are noticeable in 
these figures. Second, the point force is considered with 
different frequency namely f=sin(10pt). Figure 6
illustrates  the  forced  vibration  of  the  panel  when  no 

Table 1: Dimensions and material properties [35]
Panel Piezoelectric
--------------------------------------- ---------------------------------
Length = 304.8 mm d = 1.66e-10 m/V

Wide = 203.2 mm εpz = 1700 ε0

Thickness = 1.52 mm hpz= 0.19 mm
Epl = 71e9 Pa Epz = 63e9 Pa
υ = 0.33 υpz = 0.3
ρ  = 2800 kg/m 3 ρpz = 7650 kg/m 3

Fig. 1: The  panel  vibration  when  no  voltage  is 
applied to piezoelectric actuators (t=0.7s and 
f=sin(p/10t))

Fig. 2: The panel vibration when voltage is applied to 
piezoelectric actuators (t=0.7s and f=sin(p/10t))

voltages are applied to piezoelectric layers. The effect 
of using the controller is shown in Fig. 7. The vibration
of the location of point force and lump mass are
indicated in Fig. 8 and 9, respectively. Comparing these 
figures illustrates that this adaptive inverse dynamics 
control has acceptable ability to suppress the vibrations 
of the panel in different conditions and there is no need 
to change the controller gains in different states. 
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Fig. 3: a) The panel vibration in the location of point 

force, b) zoom region (f=sin(p/10t))
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Fig. 4a: The panel vibration in the location of lump 
mass
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Fig. 4b: Zoom region (f=sin(p/10t))

Fig. 5: The panel vibration when no voltage is applied 
to piezoelectric actuators (t=0.7s and
f=sin(10pt))

Fig. 6: The panel vibration when voltage is applied to 
piezoelectric actuators (t=0.7s and f=sin(10pt))
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Fig. 7: a) The panel vibration in the location of point force, b) zoom region (f=sin(10pt))
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                                              (a)                                                                                       (b)
Fig. 8: a) The panel vibration in the location of lump mass, b) zoom region (f=sin(10pt))

CONCLUSION

An adaptive inverse dynamics control was used to 
suppress the vibration of a simply supported panel with 
equipments. The piezoelectric layers as sensors and
actuators were attached to the panel. The governing 
equations of motion were derived using Lagrange-
Rayleigh-Ritz method and the system was simulated. 
The simulation results show the capability of the
controller.
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