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New Iterative Method for Solving Large Sparse Generalized Eigenvalue Problem
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Abstract: The generalized eigenvalue problem AX = λBX has special properties when (A,B) is a
symmetric and positive definite pair. In this paper we present a new iterative method for soling large sparse 
generalized eigenvalue problem based on Krylov subspace process. This method uses three parameters, 
which are weighted Arnoldi, Inner and outer iterations parameters. In this article those parameters have 
been optimized to increase the speed of convergence. The method has been tested by some numerical 
examples.
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INTRODUCTION

Iterative methods such as the Lanczos algorithm
and the inverse vector algorithm are widely used for 
solving large matrix generalized eigenvalue problems 
[3-12].

But these methods require solving a linear system 
of equations of the original size at each iteration of the 
process and one can use an iterative method such as 
weighted Arnoldi [2] to solve the systems. 

In this paper we present a new method for
computing the P-smallest (largest) eigenvalue of pair 
(A,B). There are three parameters:

• m, which is from the weighted Arnoldi
• The number of inner iterations
• The number of outer iterations.

We show that there is an important relation
between these parameters first and then we optimize 
them.

DEFINITIONS

If X∈Rn and ||X2|| = 1, then the number 

T

T

X AX
R(X)

X BX
=

is called the generalized Rayleigh quotient. This
quotient is well defined if and only the matrix B is 
positive definite.

Let D be a diagonal matrix, i.e, D = diag
(d1,d2,…,dn). If U,V are two vectors of Rn. We define 
the D-scalar product of (U⋅V)D = VtDU. This product is 

well defined if and only if matrix D is positive definite, 
i. e, di>0, i = 1,2,…,n. The norm associated with this 
inner product is the D-norm ||⋅||D and define by 

T n
DD

U (U.U) U DU U R= = ∀ ∈

SOLUTION OF LINEAR SYSTEM AX = b
BY WEIGHTED FOM METHOD

Azeddin Essai proposed the weighted FOM
method [2] to solve the system. In this method a vector 
d = (d1,d2,…,dn)t is chosen such that 

2
d n= .

The following algorithm describes the weighted 
Arnoldi process which uses the D-inner product (.,.) to 
construct a D-orthonormal basis of the krylov subspace 

m 1
m 0 0 0 0k (A, r ) Span{r , A r , ,A r }−= 

starting with the vector 1
D

v
v

v
= , where x0 is an initial 

guess, r0 = b-Ax0 and D = diag (d1,d2,…,dn).

Algorithm 1: Arnoldi process
For j = 1,…,m

jw Av= 

For i = 1,…,j

ij i D

ij i

h ( w , v )

w w h v

=

= −

 

 

End {for}

j 1,j D
h w+ =  if j 1,jh 0+ =  stop

j 1
j 1 ,j

w
v

h+
+

=


End {for}
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Theorem 3.1: The vectors 1 2 mv , v , , v    produced by the 
weighted Arnoldi algorithm form a D-orthonormal
basis of the subspace 

m 1
m 1 1 1k span{v , A v , ,A v }−=    .

Proof in [2].

Theorem 3.2: Denote by mV  a  n×m matrix with the 

column vectors 1 2 mv , v , , v    and by mH  a m×m
Hessenberg matrix whose nonzero entries are defined 
by the algorithm 1. Then the following relations hold:

t
m m m m 1,m m 1 m

t
m m m

AV V H h v e

V D V H
+ += +

≅

   

  

Proof in [2].
Like all krylov methods, the mth(m≥1) iterate xm of 

the weighted FOM belong to the affine krylov subspace 
x0+km(A,r0).

The iterate WF
mx  of the weighted-FOM method is 

chosen such as its residual is D-orthogonal to the 
subspace km(A,r0). That is 

WF
m D m 0r k ( A , r )⊥

In this method we use the D-inner product and the 
D-norm, so, in order to compute the solution in the 
affine subspace x0+km(A,r0), we construct a D-
orthonormal basis of the krylov subspace km(A,r0) by 
the weighted Arnoldi process.

An iterate xm of this methods can be written as 

m 0 m mx x V y= +   where ym∈Rm.
Therefore, the corresponding residual rm = b-Axm

satisfies

m 0 m m

0 m m

m 1 1 m

r b A(x V y )

r AV y

V ( e Hy )+

= − +

= −

= β −





 

Where 0 D
rβ = and e1 is the first vector of the canonical 

basis and m
T

m 1,m m

H
H

h e+

 
=   
 





.

Then, the weighted-FOM method consists in
finding the vector WF

my solution of the problem
WF

m m 1H y e= β .

Algorithm  2: Weighted  FOM  process  for  solving 
AX = b

1. Start: Choose  x0,m  and  a  tolerance ε,  compute 
r0 = b-Ax0.

2. Choose the vector d such that
2

d n= .

3. Compute 0 D
rβ =  and 0

1
r

v =
β

  .

4. Construct the D-orthonormal basis mV  by the
weighted Arnoldi process, starting with the
vector 1v .

5. Solve the system m m 1H Y e= β  by the QR

factorization of mH  and set m 0 m mx x V Y ,= + 

m mr b Ax= − .

6. If ||rm||2≤ε stop
Else set x0 = xm, r0 = rm and go to 2.

INVERSE VECTOR ITERATION METHOD

Let A and B are two n×n symmetric positive
definite matrices, in this method the basic idea is to 
minimize Rayleigh quotient and to find the smallest 
(largest) generalized eigenvalue of pair (A,B).
The algorithm is:

Algorithm 3: Inverse vector iteration process.

Input: Initial vector X1 and tolerance ε
T
1 1

1 T
1 1

X AX
X BX

λ =

for j = 1,2,… do
solve j 1 jAX BX+ =

T T
j 1 j 1 j 1 j

j 1 T T
j 1 j 1 j 1 j 1

X AX X BX
X BX X BX

+ + +
+

+ + + +

λ = =
  

   

if j 1 j

j 1

+

+

λ − λ
< ε

λ
 stop

else j 1
j 1 1T 2

j 1 j 1

X
X (4.1)

(X BX )
+

+

+ +

=


 
 end{for} 

Theorem 4.1: Let λ1<λ2≤…≤λn, where λi, i = 1,2,…,n 
are generalized eigenvalues of symmetric positive
definite pair (A,B) and X1<X2,…,Xn are corresponding 
eigenvectors, then for any initial vector X1 Algorithm 3 
converges to the smallest generalized eigenvalue of pair 
(A,B) and corresponding eigenvector.
Proof in [1]

Computational remarks:

1) The relation (4.1) in Algorithm 3 guarantees that 
new eigenvectors are also B-orthonormal i.e,

T
j 1 j 1X BX 1+ + =   and  this  helps the implementation of 
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the numerical process but doesn’t help the
convergence.

2) The main step in this method is to
solve j 1 jAX BX+ = , so in this work we try to present 
a method based on krylov subspace for solving the 
system.

THEOREMS

Theorem 5.1: The symmetric definite generalized
eigenvalue problem has real eigenvalues and linearly 
independent eigenvectors.
Proof in [1]

Theorem 5.2: The generalized eigenvectors of pair
(A,B) are B-orthonormal.
Proof in [1]

Theorem 5.3: Let λ1,λ2,…,λn are n generalized
eigenvalues of symmetric positive definite generalized
eigenvalue problem, AX = λBX and X1<X2,…,Xn are 
corresponding generalized eigenvectors and let
λ1<λ2≤…≤λn, then

i) For any vector X we have; λ1≤R(X)≤λn
ii) If the vector X is closed to eigenvector Xr then 

R(X) has constant value.

Proof
i) Let X be an arbitrary vector, then by theorem 5.1 

we have: X = C1X1+…+CnXn. Now from theorem 
5.2 and noting that λi is an eigenvalue of (A,B) and 
Xi is corresponding eigenvector we can write:

T 2 2 2
1 1 2 2 n n

T 2 2 2
1 2 n

2 2 22 n
1 1 2 n

1 1
2 2 2
1 2 n

X AX C C C
R(X)

X BX C C C

(C C C )

C C C

λ + λ + + λ
= =

+ + +

λ λλ + + +
λ λ

=
+ + +









(5.1)

Since
2 2 2 2 2 22 n
1 2 n 1 2 n

1 1

C C C C C C
λ λ

+ + + ≥ + + +
λ λ

 

then R(X)≥λ1 and similarly we can show R(X)≤λn

ii) By (5.1) we have 

n n
2 2 2 2i i
r r r i r r

i 1 i 1r r
i r i r
n n

2 2 2 2i i
r r

i 1 i 1r r
i r i r

C CC C ( ) ( )
C C

R(X)
C CC C ( ) 1 ( )
C C

= =
≠ ≠

= =
≠ ≠

λ + λ λ + λ

= =
+ +

∑ ∑

∑ ∑

If X close to Xr then Cr>>Ci, i = 1,2,…,n, i≠r so 
i

r

C
C

 is a very small number, (i≠r)

therefore
2

n
2i

i 1 r
i r

C
1 ( ) 1

C=
≠

 
 − ≅ 
  
∑

and we can write

n n
2 2 i

r i i i i
i 1 i 1 r
i r i r

n n
2 2 i

r i i
i 1 i 1 r
i r i r

n
2i

r i
i 1 r

2
r

C
R(X) ( )(1 ) where 1

C

R(X) (1 )

(1 ( 1) )

R(X) (1 O( ))

= =
≠ ≠

= =
≠ ≠

=

≅ λ + ε λ − ε ε = <<

λ≅ λ − ε + ε
λ

λ
≅ λ + − ε

λ

≅ λ + ε

∑ ∑

∑ ∑

∑

WEIGHTED FOM-INVERSE
VECTOR ITERATION METHOD

Now we are prepared to write the main algorithm 
of  this  paper,  which  is  a  combination of algorithm 2 
and 3, the resulting algorithm is:

Algorithm 4: Weighted FOM-inverse vector iteration 
method

Input initial vector x1 whit ||x1|| = 1 and tolerance ε
and parameter m.

T
1 1

1 T
1 1

m 1

x Ax
x Bx

x x

λ =

=

For k = 1,2,… do
Compute r0 = Bxk-Axm
For z = 1,2,… do

Choose   the   vector   d   such   as
2

d n=   and
set D = diag(d)

Compute 0 D
rβ = and 0

1
r

v =
β

 

Construct the D-orthonormal basis mV by the
weighted Arnoldi process, starting with 1v

Solve m m 1H Y e= β  and set m 0 m mx x V Y ,= + 

m k mr Bx Ax= −

If ||rm||2>ε then x0 = xm, r0 = rm
end {for} 

k 1 m

T
k 1 k 1

k 1 T
k 1 k 1

x x

x Ax
x Bx

+

+ +
+

+ +

=

λ =



 

 
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If k 1 k

k 1

+

+

λ − λ
< ε

λ
 then stop

Else k 1
k 1 1

2
k 1 k 1

x
x

(x Bx )

+
+

+ +

=


 

end {for}

As algorithm 4 shows, there are 2 loops in this 
algorithm, one computes the eigenvector and is called 
outer iteration, the other solves the system of linear 
equation at each iteration, which is called inner
iteration. Numerical tests show that there is a
significant relation between parameter m and inner-
outer iterations.

NUMERICAL TEST 1

Let A and B are 1000×1000 matrices as:

3 1.2 0.42 0.8 0.3 0.8
1.2 4 1.2 0.42 0.8 0.3
0.42 1.2 5 1.2 0.42 0.8
0.8 0.42 1.2 6 1.2 0.42
0.3 0.8 0.42 1.2 7 1.2
0.8 0.3 0.8 0.42 1.2 8

0.8 0.3 0.8 0.42 1.2
0.8 0.3 0.8 0.8

A 0.8 0.3 0.8 0.8
0.8 0.3 0.3 0.8

0.8 0.8 0.3 0.8
0.42 0.8 0.3
1.2 0.42 0.8

0.8 0.3 0.8 0

=

10001000

10001000

.42 1.2 1000 1.2 0.42
0.8 0.3 0.8 0.42 1.2 1001 1.2

0.8 0.3 0.8 0.42 1.2 1002

B diag(2, ,1001)

×

×

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

= 

We apply algorithm 4 to find the smallest eigenvalue with initial vector 1v  and the stopping criterion is set as 

ε≤10-7 where k 1 k

k 1

+

+

λ − λ
ε =

λ
.

Number of required inner iterations to achieve a desired accuracy, i.e, 10-7, for m = 2,4,6 are shown in Fig. 1:
We can see that by increasing the value of m the number of outer and inner iterations decrease, therefore the 

consuming time also decreases. But note that if m is very large then because of loosing orthogonality property. 
Number of iterations increase.

For example in this example for m>6, the number of outer-iterations and inner iteration are constant, therefore 
the best m in algorithm 4 for this example is m = 6 (Table 1).

In Fig. 2 the total number of required inner iterations to reach a high accuracy ε = 10-7 for m = 2,4,6 is shown. 
We can see that when m increases the amount of iterations decreases.

Fig. 1: Showing number of required inner-iterations to achieve a desired accuracy, for m = 2,4,6 (left to right)
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Table 1:Shows implementation of Algorithm 4 for pair (A,B) with 
different value of m and ε = 10-7

Inner Outer Total inner
m iteration iteration iteration Tim

2 30 29 60 53.04
4 10 28 40 18.87
6 6 27 36 12.49
8 6 27 48 24.11
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Inverse vector method
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method

Fig. 2: Comparing the total number of inner iterations 
needed to reach a desired accuracy for m = 
4,6,8,10,12. By FOM inverse vector iteration 
method [7] and for m = 2,4,6 by W-FOM
inverse vector iteration method which can be 
compared with the W-F-Inverse method

According to Fig. 2, it is noticeable that in the W-F
method for m = 6, we reach a to a limited case and the 
number of total inner iterations which are needed to 
gain a desirable accuracy (ε=10-7), equals to 36, but in 
the F method for m = 12 reach to a limited case and the 
amount of total inner iterations decreases and it equals 
to 48. Therefore in W-F method the total number of 
iterations is much less than the F method.

DEFLATION

The algorithm we have described finds the smallest 
eigenvalue. Once it is done, we can go to find the next 
smallest eigenvalue by the same procedure through 
deflation. When P eigenpairs have been found, let VP be 
the matrix consisting of the P eigenvectors with

T
P PV BV I=  and EP be the diagonal matrix consisting of 

the corresponding eigenvalues. AVP = BVPEP. Then we 
consider

T
P P P(A ,B) (A (BV ) (BV ) ,B)≡ + Σ (8.1)

where Σ = diag {δi -λi} with δi any value chosen to 
greater than λP+2. Then it is easy to check that the 
eigenvalues  of (8.1) are the union of {λP+1, λP+2,…, λn}

Table 2:Shows implementation of Algorithm4 and deflation for 
computing 4 smallest eigenvalues of pair (A,B) by ε = 10-7

Inner Outer
P m -iteration -iteration Tim λP

1 6 6 27 12.49 0.58215
2 6 6 65 46.09 0.82667
3 6 6 113 80.57 0.89151
4 6 6 177 125.67 0.92116

and {δ1,…, δp}. Thus, it’s smallest eigenvalue is λP+1
and by applying our method to (8.1), we find λP+1.

Numerical test 2: Let A and B are 1000×1000 matrix 
used in numerical test 1. 

By applying algorithm 4 and deflation process we 
find 4 smallest generalized eigenvalue of pair (A,B).

The reason why we choose m = 6 is to find the 
smallest eigenvalue. It was the most appropriate m,
therefore we used this m to find the rest of the
eigenvalues. As we can see in Table 2 by increasing P, 
the amount of the outer-iterations needed to reach an 
appropriate accuracy increases and this is predictable 
because in the first step we use sparse matrix but in the
other steps after deflation the other matrices A,B are not 
sparse (Fig. 3).

We have also computed four of the smallest
eigenvalues of pair (A,B) with the FOM-inverse vector 
method which can be compared with the weighted-
Fom-inverse iberation method (Table 3).

The comparison of the two methods in calculating 
four of the smallest eigenvalues of pair (A,B) with an 
accuracy of 10-7. It is noticed that in the weighted-
FOM-inverse method the amount of the inner and outer 
iterations has decreased a lot, therefore the time needed 
for computations has also decreased.

COMMENTS AND CONCLUSIONS

1) As we know there are some methods for computing 
the rest of eigenvalues, for example, shift method 
but the advantage of this kind of deflation
compared to the shift method is that for any δi>λP+2
(i = 1,2,..,P) the method converges to (P+1)th

eigenvalue but in the shift method if we don’t use 
an appropriate shift value it might converge to 
another eigenvalue.

2) To compute the largest eigenvalue of (A,B), we 
just need to compute the smallest eigenvalue of (-
A,B) and change the sign to obtain the largest 
eigenvalue of (A,B).

3) The vector d will be chosen as 0 i
i

0 2

( r )
d n

r
= . Such a 

choice favors the components of the residual which 
are far away from zero.
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Table 3: Shows the comparison between FOM-Inverse and Weighted-FOM- Inverse methods

FOM-inverse vector iteration method Weighted-FOM-inverse vector iteration method
-------------------------------------------------------------------------------- ---------------------------------------------------------------------------------
P Total inner iteration Outer iteration Tim P Total inner iteration Outer iteration Tim

1 48 45 8.06 1 36 27 12.49
2 48 149 72.67 2 36 65 46.09
3 48 289 141.18 3 36 113 80.57
4 48 374 178.114 4 36 177 125.67

192 857 400.02 144 382 264.82

Fig 3: Showing number required outer-iterations for compute 4 smallest generalized eigenvalue of pair (A,B) with 
accuracy 10-7

4) This algorithm has the advantage of letting us 
choose an appropriate m, so as to reach the
necessary accuracy, meaning the smallest inner-
outer iterations needed.
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