Varietal Nilpotent Groups

S. Mostafa Taheri, F. Shahini

Department of Mathematics, Faculty of Science Golestan University, Gorgan, Iran

Abstract: Let ϑ be a variety of groups defined by a set V of laws. A group ϑ is said to be ϑ -nilpotent if there exists series normal of ϑ where quotient groups contained in ϑ -marginal factor of ϑ . In this note, it is shown that if ϑ be a ϑ -nilpotent group and N $\triangleleft G$ such that $|N| = p^n$ then N contained in $V^*n(G)$.

Mathematics subject classification: 20E10.20F19.20F14

Key words: Variety . verbal . marginal . nilpotent

INTRODUCTION

Let F be a free group on a count ably infinite set $\{x_1, x_2,...\}$ and let V be a subset of F and ϑ be a variety of groups defined by a set V of laws [3].

Let **9** be an arbitrary group with an normal subgroup N, then we define the verbal subgroup V(G) and the marginal subgroup V*(G) and [NV*G] as follows

$$V(G) = \{v(g_1, g_2, ..., g_n); v \in V, g_i \in G, 1 \le i \le n\}$$

$$V^*(G) = \begin{cases} g \in G ; v(g_1, g_2, \dots, g_i g, \dots, g_n) = v(g_1, g_2, \dots, g_i, \dots, g_n), \\ v \in V , g_i \in G , 1 \le i \le n \end{cases}$$
 $(iv)V\left(\frac{G}{N}\right) = \frac{V(G)N}{N}$ and $\frac{V^*(G)N}{N} \le V^*\left(\frac{G}{N}\right)$;

$$[NV^*G] = \begin{cases} v(g_1, g_2, ..., g_i a, ..., g_n) \ v(g_1, g_2, ..., g_i, ..., g_n)^{-1}; \\ v \in V, g_i \in G, a \in N, 1 \le i \le n \end{cases}$$

It is easy to checked that the verbal subgroup V(G) is a fully invariant subgroup and the marginal subgroup

 $V^*(G)$ is a characteristic subgroup in θ and $[NV^*G]$ is the smallest normal subgroup of G contained in N, such

that
$$\frac{N}{\lceil NV^*G \rceil} \le V^* \left(\frac{G}{\lceil NV^*G \rceil} \right)$$
.

The following lemma give basic properties of verbal and marginal subgroups of a group G with respect to the variety, which are useful in our investigation [1, 2] for the proofs.

Lemma 1.1: Let **9** be a variety of groups defined by the set of laws and let N be a normal subgroup of a group **9**. Then the following statements hold:

(i)
$$V(V^*(G)) = 1$$
 and $V^*\left(\frac{G}{V(G)}\right) = \frac{G}{V(G)}$

$$(ii)V(G) = 1iff V^*(G) = Giff G \in \mathcal{G}$$
;

(iii)
$$\lceil NV^*G \rceil = 1 iff \ N \le V^*(G)$$
;

$$(iv)V\left(\frac{G}{N}\right) = \frac{V(G)N}{N}$$
 and $\frac{V^*(G)N}{N} \le V^*\left(\frac{G}{N}\right)$

$$(v)V(N) \le [NV^*G] \le N \cap V(G)$$
.inparticular,
 $V(G) = [GV^*G];$

(vi)
$$N \cap V(G) = 1$$
 then $N \leq V^*(G)$ and $V^*(G/N) = (V^*(G))/N$

(vii)
$$[G,N] \leq V^*(G)$$
 and $[V(G),V^*(G)] = 1$

 $(viii)(G) \cap V^*(G)$, is contained in the Frattini subgroup of G.

Theorem 1.2: [1] Let $H \le G$ and $N \triangleleft G$ such that G =HN. Let ϑ be a variety. Then $V(G) = V(H) [NV^*G]$

Let $\boldsymbol{\vartheta}$ be a variety of groups, we define the lower $\boldsymbol{\vartheta}$ -verbal series of $\boldsymbol{\vartheta}$ to be

$$G = V^{0}(G) \ge V^{1}(G) \ge ... \ge V^{n}(G) \ge ...$$

where, for n>0, $V^{n}(G) = V(V^{n-1}(G))$. It is easy that

$$\frac{V^{n-1}(G)}{V^n(G_0)}$$

The upper θ -marginal series of G to be

$$1 = V_0^*(G) \le V_1^*(G) \le \dots \le V_n^*(G) \le \dots$$

where, for
$$n > 0$$
, $\frac{V_n^*(G)}{V_{n-1}^*(G)} = V^* \left(\frac{G}{V_{n-1}^*(G)}\right)$.

The corresponding lower θ -marginal series of G given by

$$G = V_0(G) \ge V_1(G) \ge \dots \ge V_n(G) \ge \dots$$

where, for n>0, $V_n(G) = [V_{n-1}(G)V^*G]$ also [4,5]. By using definition and lemma 1.1, the following properties hold, for $i,j \ge 0$

(i)
$$V^{i}(V^{j}(G)) = V^{i+j}(G)$$
;

(ii)
$$V_{i}^{*}\left(\frac{G}{V_{i}^{*}(G)}\right) = \frac{V_{i+j}^{*}(G)}{V_{i}^{*}(G)}$$
;

(iii)
$$\frac{V_i(G)}{V_{i+1}(G)} \le V^* \left(\frac{G}{V_{i+1}(G)}\right)$$
;

(iv)
$$V^* \left(\frac{V^i(G)}{V^{i+1}(G)} \right) = \frac{V^i(G)}{V^{i+1}(G)}$$
;

Diffinition 1.3: A group G is said to be ϑ -nilpotent if there exist a series

$$1 = G_0 \le G_1 \le \dots \le G_k = G$$

Such that $G_i \triangleleft G$ and $\frac{G_{i+1}}{G_1} \leq V^*(\frac{G}{G_1})$, for i = 0, 1, ..., n-

The longth of the shortest series (*) is the ϑ -nilpotent class of G.

The class of 9-nilpotent groups is closed under the formation of subgroups, images and finite direct products.

Theorem 1.4: [4] A group G is a ϑ -nilpotent of class n iff

$$V_{n+1}(G) = 1 \text{ iff } V^*n(G) = G$$

Thworem 1.5: [5] If $V = \{[x_1, x_2, ..., x_n]\}$ and ϑ be a variety of groups defined by V and G be an arbitrary group such that $\frac{G}{V^*G_0}$ is a cyclic group then $V^*(G) = G$.

Theorem 1.6: [4] If G is a ϑ -nilpotent group and $1 \neq N \subseteq G$, then $N \cap V^*(G) \neq 1$.

MAIN RESULT

Let G be an arbitrary group and ϑ be a variety of groups. If $V^*(G)$ is trivial then one easily shows that $V^*_n(G) = 1$, for $n \ge 1$. In this case if G is a ϑ -nilpotent group then G is trivial group.

Theorem 2.1: If $V = \{[x_1, x_2, ..., x_n]\}$ and ϑ be a variety of groups defined by V and G be a finite P-group where P is prime number then G is a ϑ -nilpotent group.

Proof: Let $|G| = p^m$ by induction on the order of G. If

$$|G| = P$$
 and if $|V^*(G)| = 1$ implies that $\left| \frac{G}{V^*(G)} \right| = P$ by

theorem 1.5, i.e. $|V^*(G)| = P$ and this is contradiction with assumption, hence $|V^*(G)| = P$ i.e. G is a ϑ -nilpotent group of class one. Now assume that $m \ge 1$ and $|G| = p^m$ if $V^*(G) = G$ then G is ϑ -nilpotent group otherwise the oder of $\frac{G}{V^*(G)}$ is less than p^m by the

induction hypothesis, this group is a ϑ -nilpotent group and has the upper ϑ -marginal series as follows that

$$1 = \frac{G_0}{V^*(G)} \le \frac{G_1}{V^*(G)} \le \dots \le \frac{G_k}{V^*(G)} = \frac{G}{V^*(G)}$$

by isomorphic theorems we have $\frac{G_i}{G_{i-1}} \le V^* \left(\frac{G}{G_{i-1}}\right)$ it

follows that there exist a upper ϑ -marginal series for G as follows that

$$1 = G_0 \le G_1 \le \dots \le G_k = G$$

i.e. G is a 9 -nilpotent group. ■

Corollary 2.2: If $V = \{[x_1, x_2, ..., x_n]\}$ and ϑ be a variety of groups defined by V and G be a ϑ -nilpotent group of class C>1 then $V^*_{c-1}(G)$ is not cyclic.

Proof: let $\frac{G}{V^*_{(c-1)}(G)}$ be cyclic, then

$$\frac{\frac{G}{V^*_{c-2}(G)}}{V^*\left(\frac{G}{V^*_{c-2}(G)}\right)} = \frac{\frac{G}{V^*_{c-2}(G)}}{\frac{V^*_{c-1}(G)}{V^*_{c-2}(G)}} \simeq \frac{G}{V^*_{c-1}(G)}$$

By theorem 1.5 we have

$$\frac{V_{c-1}^{*}(G)}{V_{c-2}^{*}(G)} = V^{*}\left(\frac{G}{V_{c-2}^{*}(G)}\right) = \frac{G}{V_{c-2}^{*}(G)}$$

i.e. $G = V_{c-1}^*(G)$ and this is contradiction with assumption.

Theorem 2.3: If G be a group, $N \le V^*(G)$ and G/N be a ϑ -nilpotent group then G is a ϑ -nilpotent group.

Proof: Let G/N be a ϑ -nilpotent group thus there exist a normal series as follows

$$1 = \frac{G_1}{N} \le \frac{G_2}{N} \le \dots \le \frac{G_n}{N} = \frac{G}{N}$$

Such that

$$\frac{\underline{G_{i+1}}}{N} \le V^* \left(\frac{\underline{G}}{N} \atop \underline{G_i} \atop N \right)$$

By isomorphic theorems we have $\frac{G_{i+1}}{G_i} \leq V^* \left(\frac{G}{G_i}\right) \text{ and the normal series}$

$$1 = G_0 \le G_1 = N \le ... \le G_n = G$$

Such that $\frac{G_1}{G_0} \le V^* \left(\frac{G}{G_0} \right)$ thus G is a ϑ -nilpotent group.

Theorem 2.4: If G be a ϑ -nilpotent group and $\mathbb{N} \subseteq G$ such that $|\mathbb{N}| = p^n$ then $\mathbb{N} \le \mathbb{V}_p^*(G)$.

Proof: By Induction we have if n = 1 and |N| = P then $1 \neq N \cap V^*(G) \leq N$ thus $|N \cap V^*(G)| = P = |N|$ it follows that $N \cap V^*(G) = N$ hence $N \leq V^*(G)$. Let the assertion hold for for every number less than n and $|N| = p^n$ and

 $M = N \cap V^*(G) \neq 1$ then $|N/M| = p^m$ and m < n. By isomorphic theorems we have

$$\frac{N}{M} = \frac{N}{N \cap V^*(G)} \cong \frac{NV^*(G)}{V^*(G)}$$

By Induction hypothesis

$$\frac{NV^{*}(G)}{V^{*}(G)} \le V^{*}_{m}(\frac{G}{V^{*}(G)}) = \frac{V^{*}_{m+1}(G)}{V^{*}(G)}$$

that is implies that $N \leq V_{m+1}^*(G) \leq V_n^*(G)$

Theorem 2.5: Let ϑ be a variety of groups, G be a ϑ -nilpotent group of class n and G = H V(G) then G = H.

Proof: By Inductin we have $G = H V_n(G)$ hence by theorem 1.2 $V(G) = V(H)[V_n(G)V^*G]$ it follows that $G = H V(G) = H V(H)V_{n+1}(G) = H V_{n+1}(G)$ and since G is a ϑ -nilpotent group thus $V_{n+1}(G) = 1$ hence the result follows immediately.

Theorem 2.6: Let ϑ be a variety of groups and G be a finite group. Then there is a subgroup H such that G=H $V^*(G)$ and $H \cap V^*(G)$ is a ϑ -nilpotent group.

Proof: by Induction on the |G|, if $V^*(G) \subseteq \Phi(G)$ then trivially G = H and since $V(V^*(G)) = 1$ thus $V^*(G)$, is a ϑ -nilpotent. Thus $H \cap V^*(G) = V^*(G)$ the result follows. Now if $V^*(G) \subseteq \Phi(G)$ then there is a maximal subgroup M such that $V^*(G) \subseteq M$. By hypothesis induction there is $H \le M$ such that M = H ($V^*(G) \cap M$) and $H \cap (V^*(G) \cap M) = H \cap V^*(G)$ is a ϑ -nilpotent group thus G = H $V^*(G)$ and the assertion hold.

REFERENCES

- Hekster, N.S., 1989. Varieties of group and isologism. Journal Austral Math Science, (Series A), 46: 22-60.
- Leedham-Green, C.R. and S. Mckay, 1976. Bearinvariant, isologism, varietal laws and homology, Acta Math. 137: 99-150.
- 3. Neumann, H., 1967. Varieties of Group, Ergebnisse der Math., Neue Folge 37, Springer, Berlin.
- Taheri, S.M., 2009. Remark on the Varietal Nilpotent and Soluble Groups. JP Journal of Algebra, Number Theory and Application, 13: 153-159.
- Taheri, S.M. and M. Parvizian, 2010. Properties of the varieties Nilpotent Groups. International Journal of Algebra, 28: 1393-1397.