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Abstract: Let  be a variety of groups defined by a set V of laws. A group  is said to be -nilpotent if 
there exists series normal of  where quotient groups contained in -marginal factor of . In this note, it is 
shown that if  be a -nilpotent group and N such that |N| = pn then N contained in V*n(G).  
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INTRODUCTION 

 
 Let F be a free group on a count ably infinite set 
{x1, x2  be a variety 
of groups defined by a set V of laws [3].  
 Let  be an arbitrary group with an normal 
subgroup N, then we define the verbal subgroup V(G) 
and the marginal subgroup V*(G) and [NV*G] as 
follows 
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It is easy to checked that the verbal subgroup V(G) is a 

fully invariant subgroup and the marginal subgroup 
V*(G) is a characteristic subgroup in  and [NV*G] is 

the smallest normal subgroup of G contained in N, such 
that *
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 The following lemma give basic properties of 
verbal and marginal subgroups of a group G with 
respect to the variety, which are useful in our 
investigation [1, 2] for the proofs.  
 

Lemma 1.1: Let  be a variety of groups defined by 
the set of laws and let N be a normal subgroup of a 
group . Then the following statements hold: 
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 (viii) (G) V*(G), is contained in the Frattini subgroup 

of G.  
 
Theorem 1.2: [1] Let H G and N G  such that G = 
HN. Let  be a variety. Then V(G) = V(H) [NV*G]  
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Let  be a variety of groups, we define the lower -
verbal series of  to be 
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where, for n>0, Vn(G) = V(Vn-1(G)). It is easy that 
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The upper -marginal series of G to be 
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  The corresponding lower -marginal series of G 
given by 
 

0 1   ,nG V G V G V G  
 
where, for n>0, Vn(G) = [Vn-1(G)V*G] also [4,5]. 
By using definition and lemma 1.1, the following 
properties hold, for i,j 0 
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Difinition 1.3: A group G is said to be -nilpotent if 
there exist a series 
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Such that iG G   and 
1 1

*1 ( )
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iG GV -

1.  
 The   longth   of   the   shortest  series  (*)  is  the 

-nilpotent class of G.  
 The class of -nilpotent groups is closed under the 
formation of subgroups, images and finite direct 
products.  

 

Theorem 1.4: [4] A group G is a -nilpotent of class n 
iff  
 

Vn+1(G) = 1 iff V*n(G) = G 
 
Thworem  1.5:  [5]  If  V  =  {[ x1,x2 n]}  and   
be a variety of groups defined by V and G be an 

arbitrary group such that *
0G

G
V

  is a cyclic group then 

V*(G) = G. 
 
Theorem 1.6: [4] If G is a -nilpotent group and 
1 N G, then N V*(G) 1.  
 

MAIN RESULT
 
 Let G be an arbitrary group and  be a variety of 
groups. If V*(G) is trivial then one easily shows that 
V*

n(G) = 1, for n 1. In this case if G is a -nilpotent 
group then G is trivial group.  
 
Theorem 2.1: If V = {[x1,x2 n]} and  be a variety 
of groups defined by V and G be a finite P-group where 
P is prime number then G is a -nilpotent group.  
 
Proof: Let |G| = pm by induction on the order of G. If 

|G| = P and if |V*(G)| =1 implies that *

G P
V G

 by 

theorem 1.5, i.e. |V*(G)| = P and this is contradiction 
with   assumption,   hence   |V*(G)|  =  P  i.e.  G  is  a 

-nilpotent group of class one. Now assume that m 1 
and |G| = pm if V*(G) = G then G is -nilpotent group 

otherwise the oder of *

G
V G

 is less than pm by the 

induction hypothesis, this group is a -nilpotent group 
and has the upper -marginal series as follows that 
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by isomorphic theorems we have *
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follows that there exist a upper -marginal series for G 
as follows that 
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i.e. G is a -nilpotent group.  
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Corollary 2.2: If V = {[ x1,x2 n]} and  be a 
variety of groups defined by V and G be a -nilpotent 
group of class C>1 then V*

c-1(G) is not cyclic.  
 

Proof: let *
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 be cyclic, then 
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By theorem 1.5 we have 
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i.e. G = V*
c-1(G) and this is contradiction with 

assumption.  
 
Theorem 2.3: If G be a group, N V*(G) and G/N be a 

-nilpotent group then G is a -nilpotent group.  
 
Proof: Let G/N be a -nilpotent group thus there exist 
a normal series as follows 
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 By isomorphic theorems we have 

*i 1

i i

G  
G G

GV and the normal series 

 
0 1 n1 G  G N   G  G  

Such that 
0

*1

0

G  
G G

GV  thus G is a -nilpotent group.  

Theorem 2.4: If G be a -nilpotent group and N G 
such that |N| = pn then N V*

n(G).  
 
Proof: By Induction we have if n = 1 and |N| = P then 
1 N V*(G) N thus |N V*(G)| = P = |N| it follows that 
N V*(G) = N hence N V*(G). Let the assertion hold 
for  for  every  number  less  than  n  and  |N| = pn and  
 

 
M = N V*(G) 1 then |N/M| = pm and m<n. By 
isomorfhic theorems we have 
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By Induction hypothesis 
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Theorem  2.5: Let  be a variety of groups, G be a -
nilpotent group of class n and G = H V(G) then G = H.  
 
Proof: By Inductin we have G = H Vn(G) hence by 
theorem  1.2 V(G)  =  V(H)[Vn(G)V*G] it follows that 
G = H V(G) = H V(H)Vn+1(G) = H Vn+1(G) and since G 
is a -nilpotent group thus Vn+1(G) = 1 hence the result 
follows immediately.  

Theorem 2.6: Let  be a variety of groups and G be a 
finite group. Then there is a subgroup H such that G=H 
V*(G) and H V*(G) is a -nilpotent group.  
Proof: by Induction on the |G|, if V*(G) (G) then 
trivially G= H and since V(V*(G)) = 1 thus V*(G), is a 

-nilpotent. Thus H V*(G) = V*(G) the result follows. 
Now if V*(G) (G) then there is a maximal subgroup 
M  such  that  V*(G)  M. By  hypothesis  induction 
there is H M such that M = H (V*(G) M) and 
H (V*(G) M)= H V*(G) is a -nilpotent group thus 
G = H V*(G) and the assertion hold.  
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