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Abstract: The aim of this paper is to introduce a new approximate method, namely the Modified Laplace 
Padé Decomposition Method (MLPDM) which is a combination of modified Laplace decomposition and 
Padé approximation to provide an analytical approximate solution to Thomas-Fermi equation. This new 
iteration approach provides us with a convenient way to approximate solution. A good agreement between 
the obtained solution and some well-known results has been demonstrated. The proposed technique can be 
easily applied to handle other strongly nonlinear problems .
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INTRODUCTION

The Thomas-Fermi equation arises in the
mathematical modeling of various models in physics, 
astrophysics, solid state physics, nuclear charge in 
heavy atoms and applied sciences [1-5]. Due to its 
diversified significance and importance, the Thomas-
Fermi equation which is a second order nonlinear
differential equation has been investigated by many 
researchers. Various powerful mathematical techniques 
such as Adomian decomposition method [6], variational 
iterative method [7] and differential transform method 
[8] have been proposed for obtaining the approximate 
analytic solution of the Thomas-Fermi equation.

The Laplace decomp osition method was first
proposed by Khuri [9, 10], with coupling of standard 
Adomian decomposition method and Laplace transform 
for solving nonlinear differential equations and Bratu's 
problem. There is no need of linearization,
discretization and large computational work. It has been 
used to solve effectively, easily and accurately a large 
class of nonlinear problems with approximation.
Recently Majid et al. have been introduced various 
modifications in Laplace decomposition to deal with 
nonlinear behaviors of the physical models [11-14]. It is 
worth mentioning that the proposed method is an
elegant combination of the modified Laplace
decomposition method and the Padé approximantions 
[15]. The advantage of this proposed method is its 
capability of combining two powerful methods for
obtaining rapid convergent series for nonlinear
equations. To the best of authors knowledge no attempt 

has been made to exploit this method to solve nonlinear 
Thomas-Fermi equation.

This paper considers the effectiveness of the
modified Laplace Padé decomposition method for
solving second order nonlinear Thomas-Fermi equation. 
The paper is organized as follows. In Section 2, the 
basic concept of MLPDM is presented. Section 3
contains basic idea of Padé approximants. Section 4, 
contains governing equations. The conclusions are
given in last Section.

FORMULATION OF MODIFIED 
LAPLACE DECOMPOSITION METHOD

Consider equation F(u(x)) = g(x) where F
represents a general nonlinear ordinary or partial
differential  operator  including  both  linear  and 
nonlinear  terms.  The  linear  terms  are  decomposes 
into L+R, where L is a linear operator and R is the 
remaining  of  the  linear  operator. Thus, the equation 
can be written as

Lu Ru Nu g(x)+ + = (1)

where Nu, indicates the nonlinear terms. By applying 
Laplace transform on both sides of Eq. (1), we get 

[ ]Lu Ru Nu g(x)+ + =L (2)

Using the differential property of Laplace
transform, we have 
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[ ] [ ] [ ] [ ]
n

n k 1 (n k)

k 1

s u s u (0) Ru Nu g(x)− −

=

− + + =∑L L L L (3)

Operating inverse Laplace transform on both sides 
of Eq. (3), we get

[ ] [ ]1
n

1u G(x) Nu Ru
s

−   = − +   
L L L (4)

The Laplace decomposition method assumes the 
solution u can be expanded into infinite series as 

m
m 0

u u
∞

=

= ∑ (5)

Also the nonlinear term Nu can be written as

m
m 0

Nu A
∞

=

= ∑ (6)

where Am are the Adomian polynomials [6]. By
substituting Eqs. (5) and (6) in Eq. (4), the solution can 
be written as 

1
m mn

m 0 m 0 m 0

1
u (x) G(x) A R u

s

∞ ∞ ∞
−

= = =

     
= − +     

      
∑ ∑ ∑L L L (7)

In Eq. (7), the Adomian polynomials can be
generated by several means. Here we used the
following recursive formulation:

m
i

m im
i 0 0

1 d
A N u , m 0,1,2,....

m!d

∞

= λ =

  
= λ =  λ   

∑ (8)

In general, the recursive relation is given by

0

1
m 1 mn

m 0 m 0

u (x) G(x)

1
u (x) A R u , m 0

s

∞ ∞
−

+
= =

=

     
= − + ≥     

      
∑ ∑L L L

(9)

where G(x) represents the term arising from source
term and prescribe initial conditions. The modified
Laplace decomposition method [14] suggests that the 
function G(x) in Eqs. (10) can be decompose into two 
parts

0 1G(x) G (x) G (x)= + (10)

where G0(x) is assign to zeroth order solution and the 
remaining part G1(x) is assign to first order solution. 
Using that assumption we reformulate Eqs. (9) for
modified Laplace decomposition method as:

n

n

0 0

1 1
m 0 m 01 1 0 0s

1 1
m 0 m 0m 1 m ms

u (x) G (x)

u (x) G ( x ) A R u

u (x) A R u , m 1

− ∞ ∞
= =

− ∞ ∞
= =+

=


      = − +∑ ∑      


      = − + ≥∑ ∑      

L L L

L L L

(11)

The proposed method does not resort to
linearization or assumptions of weak nonlinearity, the 
solution generated in the form of general solution and it 
is more realistic compared to the method of simplifying 
the physical problems.

PADÉ APPROXIMANTS

A Padé approximant is the ratio of two
polynomials constructed from the coefficients of the 
Taylor series expansion of a function u(x). The [L/M] 
Padé approximants to a function u(x) are given by 
Baker [5].

L

M

L P (x)
M Q (x)
  =  

(12)

where PL(x) is a polynomial of degree at most L and 
QM(x) is a degree of at most M. The power series in 
terms of x is given below

i
i

i 0

u(x) a x
∞

=

=∑ (13)

L M 1L

M

P(x)
u(x) O(x )

Q (x)
+ += + (14)

Determine the coefficients of PL(x) and QM(x) by 
Eq. (14). We can multiply the numerator and
denominator by a constant and leave [L/M] unchanged, 
we imposed the normalization condition

MQ (x) 1= (15)

Expanding polynomials PL(x) and QM(x) in power 
series in terms of x of order L and M which is given 
below:

2 L
L 0 1 2 L

2 M
M 1 2 M

P ( x ) p p x p x ... p x
Q (x) 1 q x q x ... q x

= + + + +

= + + + +
(16)

Using Eq. (16) in Eq. (14), we can write Eq. (14) in 
the notation of formal power series as 

2 L
i L M 10 1 2 L

i 2 M
i 0 1 2 M

p p x p x ... p xa x O(x )
1 q x q x ... q x

∞
+ +

=

+ + + += +
+ + + +∑ (17)
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By cross-multiplication of Eq. (17), we get

L 2
0 1 L 0 1 2

M L M 1
1 M

(p p x ... p x )(a a x a x ...)
1 q x ... q x O(x )+ +

+ + + + + +

= + + + +
(18)

From Eq. (18) we obtain the set of linear equations

0 0

1 0 1 1

2 1 1 0 2 2

L L 1 1 0 L L

a p
a a q p

a a q a q p

a a q a q p−

=
 + = + + =


 + + =


(19)

and
L 1 L 1 L M 1 M

L 2 L 1 1 L M 2 M

L M L M 1 1 L M

a a q ... a q 0
a a q ... a q 0

a a q a q 0

+ − +

+ + − +

+ + −

+ + + =
 + + + =


 + + =


(20)

From Eq. (20), we can obtain qi, 1≤i≤M. Once the 
values of q1, q2,…, qM are all known Eq. (19) gives an 
explicit formula for the unknown quantities p1, p2,…, pL
We calculate diagonal approximants like [2/2], [3/3],
[4/4] or [5/5] which are more accurate than non
diagonal approximants and can be calculated easily by 
built-in utilities of Mathematica 7 and Maple 14.

NUMERICAL APPLICATIONS

In this section, we apply new version of ADM for 
finding an approximate solution of the Thomas-Fermi
equation. We also introduce a slight modification in the 
selection of initial value which makes the application of 
the proposed algorithms simpler and improves the
efficiency. Consider the Thomas-Fermi equation [1]. 

3 / 2ff ′′ =
η

(21)

f(0) 1,f'(0) 0= = (22)

where prime denote differentiation with respect to η.
To apply modified Laplace decomposition method, we 
write Eq. (21) in an operator form 

2 3 / 2

2
d f f
d

=
η η

(23)

Applying Laplace transform algorithm we get

[ ]2 1 / 2 3 / 2s f sf(0) f (0 ) f−′  − − = η L L (24)

Using given boundary conditions in Eq. (22) into 
Eq. (24), we have 

[ ]2 1 /2 3 / 2s f s f−− − α = ηL L[ ]

[ ] 1 /2 3 / 2
2 2

s 1
f f

s s
−+ α  = + η L L (25)

Applying inverse Laplace transform to Eq. (25) we get

1 1 /2 3 / 2
2

1f ( ) 1 f
s

− −  η = +αη+ η   
L L (26)

The Laplace decomposition method assumes a
series solution of the function ƒ(η) is given by

m
m 0

f ( ) f ( )
∞

=

η = η∑ (27)

Substituting Eq. (27) into Eq. (26), we get

1 1 / 2
m m2

m 0 m 0

1
f ( ) 1 A ( )

s

∞ ∞
− −

= =

  
η = +αη+ η η  

  
∑ ∑L L (28)

In Eq. (28), Am(η) is a Adomian polynomial that 
represents nonlinear term. By modified Laplace
decomposition method, our modified recursive relation 
is given below 

0

1 1 / 2
1 02

1 1 / 2
m 1 m2

m 0

f ( ) 1
1

f ( ) A ( )
s

1
f ( ) A ( ) , m 1

s

− −

∞
− −

+
=

η =

  η =αη+ η η   
  

η = η η ≥  
  

∑

L L

L L

(29)

Now the components of the series solution are

0f ( ) 1η = (30)

3 / 2

1
4

f ( )
3
η

η = αη+ (31)

3 5 / 2

2
2

f ( )
3 5
η αη

η = + (32)

4 9 / 2 2 7 / 2

3
2 2 3

f ( )
15 27 70
αη η α η

η = + + (33)




The series solution is given by
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m
m 0

f ( ) f ( )
∞

=

η = η∑ (34)

Substituting Eqs. (30)-(33), into Eq. (34), we
obtain the following series solution

3 /2 3 5 / 2 4

9 / 2 2 7 / 2

4 2 2
f ( ) 1

3 3 5 15
2 3 ....

27 70

η η αη αη
η = +αη+ + + +

η α η+ + +
(35)

Our aim in this section is mainly concerned with 
the mathematical behavior of the solution ƒ(η) in order 
to determine the value of free parameter α = ƒ′(0). It 
was formally shown by that this goal can easily be 
achieved by forming the Padé approximants [15] which 
have the advantage of manipulating the polynomial
approximation into a rational function to obtain the
more information about ƒ(η). It is well known fact that 
Padé approximants will converges on the entire real 
axis if ƒ(η) is free of singularities on the entire real 
axis. More importantly, the diagonal approximants are 
most accurate approximants; therefore we will construct 
only diagonal approximants. Using the boundary
condition ƒ(∞) = 0, the diagonal approximants [M/M] 
vanish  if the coefficients of η with the highest power in 
the  numerator  vanishes.  Choosing  the  coefficients of 
the highest power of η equal to zero, we get a
polynomial equations in α which can be solved very 
easily by using the built in utilities in the most
manipulation languages such as Maple 9 and
Mathematica 7. To apply Padé approximants it is useful 
to use the following transformation 

1 / 2 xη = (36)

into Eq. (35) to obtain the series free of fraction powers 
of x 

3 6 5
2

8 9 2 7

4x x 2 x
f ( ) 1 x

3 3 5
2 x 2x 3 x ...
15 27 70

α
η = + α + + +

α α+ + + +
(37)

The diagonal Padé approximants can be applied in 
order to study the mathematical behavior of the
potential ƒ(η) and to determine the initial slope of the 
potential ƒ′(0).

Table 1, clearly elucidates that Present solution 
method namely MLPDM shows excellent agreement 
with the solutions already available in literature [6-8].
This analysis shows that LDM suits for Thomas-Fermi
equation.

Table 1: Comparison of the MLPDM with different analytical 
techniques for initial slope of the potential

Padé
approximants MLPDM ADM [6] VIM [7] DTM [8]

[2/2] -1.211413 -1.214140 -1.213802 -1.211413
[4/4] -1.550525 -1.550526 -1.552671 -1.550525
[7/7] -1.586019 -1.586021 -1.587245 -1.586021
[8/8] -1.588076 -1.588076 -1.588076 -1.588076
[10/10] -1.588076 -1.588076 -1.588076 -1.588076

CONCLUSION

The main aim of this work is to provide the series 
solution of the Thomas-Fermi equation by using
modified Laplace Padé decomposition method
(MLPDM). The new Modified Laplace Padé
Decomposition Method (MLPDM) is a powerful tool to 
search for solutions of various nonlinear problems. The 
method overcomes the difficulty in other methods
because it is efficient. We derived fast convergent 
results by combining the series obtained by modified 
Laplace decomposition method, with the diagonal Padé 
approximants. The convergence of MLPDM is also 
shown in Table 1. The analysis given here shows 
further confidence on MLPDM.
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