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Abstract: Most of the krylov subspace methods use some projection techniques to solve linear system of 
equations. ELMRES is a krylov subspace method which uses an oblique projection technique. This method 
transfers the original linear system into an upper least square problem by using the Hessenberg 
decomposition algorithm and update the current approximation iterate by the solution of this least square. 
Here the algorithm of ELMRES is described and it is applied to solve some popular ill-posed linear system 
of equations by using Tikhonov regularization technique.
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INTRODUCTION

The solution of large linear discrete ill-posed
problem Ax = b where A and b are contaminated by 
noise, by iterative methods has recently received
considerable attention. Due to the severe ill-
condit ioning of A and b, the meaningful solution of this 
equation is not yield, obviously. This paper considers 
the solution of linear systems of equations

n n nAx b, A R , x,b R×= ∈ ∈ (1)

with a large scale matrix of ill-determined rank. In 
particular, A is severely ill-conditiond or may be
singular. These kinds of problems are obtained by 
discritizing of some ill-posed problems, such as
Fredholm integral equations of the first kind with a 
smooth kernel, as well as in image debluring.

Because of the error in the right hand side vector b 
and the severe ill-conditioning of A, the least-square
solution of minimal Euclidean norm of (1), given by x̂ ,
is not a meaningful approximation. Then the linear
system (1) is replaced by nearby system that is less 
sensitive to perturbations.

Tikhonov regularization [4] in its simplest form
replaces (1) by the minimization problem 

{ }n

2 2

x R
min Ax b x
∈

− + λ (2)

where λ>0 is a regularization parameter to check the 
norm of approximate solution. Determining the exact 
value of λ is not easy; however there exist some studies 
on this matter. It is proved that the solution of (2) is 
obtained by solving the linear system

T T
n(A A I )x A b+ λ = (3)

Fortunately, equation (3) is a linear system which 
is not so sensitive to perturbations. On the other hand, 
the solution of (3) is also the answer of (1)
approximately. Then it is acceptable to solve less
sensitive and more well-conditioned linear systems (3) 
instead of finding the solution of Ax = b. Because of 
the above reasons, this Tikhonov regularization
technique is applied to solve (nearly) singular linear 
equations.

ELMRES IMPLEMENTATION

Using  iterative  methods  for  solving  equations 
Ax = b with a large scale matrix A has some important 
advantages like being economical in point of arithmetic 
costs and etc. then many researchers have focused to 
solve (1) by variety of these methods and have tried to 
modify them. Among these methods, projection
techniques are much more approved. Because these 
methods modify the last approximation by solving
some new problems with too lower dimensions. 

ELMRES is an iterative method which uses an 
oblique projection technique. It was propused by
Howell and Stephens in [5]. ELMRES algorithm is run 
under the Hessenberg column by column reduction. 
Then the Hessenberg reduction algorithm is recalled 
here.

Algorithm 1: Hessenberg decomposition algorithm

1. Given vector r and set β = r(1) and ν1 = r/β.
2. for j = 0,1,…, k-1 do

a. ( ) T
j 1 2 j 1w Av , u w 2 : j 1 , w w u v v+ + = = + = −   ,
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b. ( ) ( )j 1h 1 : j 2 w 1 : j 2 ,+ + = + .

( ) ( )j 2 j 1w 1 : j 2 0 , v w h j 2+ ++ = = +

End
3. Set [ ]k 1 2 kH h h h=   then ( )k 1 k

kH R + ×∈ .

ELMRES implementation is similar to GMRES [8] 
because GMRES by the Arnoldi process reduces the
matrix A while ELMRES do it by the above algorithm 
and both of them need to solve an upper hessenberg 
least square problem to modify their last iterations. In 
Algorithm 1, Constructing the vectors νi, they are
computed such that 

{ }i 1 2 i 1v e , e , ,e , i 1,2, ,k 1−⊥ = −  .

The  cost  to  create  k  bases  vectors  of  Kk(A,r0)
is  2k2n  for  GMRES  while  it  is  k2n-k3/3 for 
ELMRES. Then ELMRES is preferred in point of
operators cost.

By setting T
i n i iL I v e= +  and L = L1L2…Lk then

1 T
i n i iL I v e− = − and 1 1 1 1

k k 1 1L L L L− − − −
−=  are obtained. By

choosing kL̂ as the first k columns of L we have 

k k 1 k
ˆ ˆAL L H+=  (4)

Now, computing the least square 
k k 1

y C
min H y e
∈

−β ,

the next iterate of ELMRES is  obtained as:

k 0
ˆx x L y= +

where y  is the solution of the least square problem and 
x0 is an initial vector.

To know more about ELMRES, its algorithm is 
written in below 

Algorithm 2: ELeMentary RESidual (ELMRES)
Algorithm

1. Given x0, set r0 = b-Ax0
2. Run  the  Hessenberg  decomposition  algorithm 

with r0.
3. Solve the least square problem k 1 ky Rmin e H y∈ β −

4. Let 1 ky argmin e H y= β − , the next approximation 

iterate of the solution of (1) is k 0 kx x L y= +

5. If xk does not satisfy, set x0 = xk and go to 1.

In ELMRES algorithm the approximation iterate xk
is computed such that 

( )
( )

k 0

1
k

x k A,r
x argmin L b Ax−

∈
= −

The following theorem describes, How xk
minimizes ||L-1(b-Ax)|| on Kk(A,r0).

Theorem 1: Iterative solution xk of ELMRES is the 
solution of minimizing problem

( )
( )

k 0

1

x K A , r
min L b Ax−

∈
−

Proof: Let k
k 0

ˆx x Ly, y R= + ∈  be the approximate
solution of Ax = b. By multiplying the both sides of this 
relation by A, it is given that 0

ˆAx Ax ALy= + . Then

0 0
ˆ ˆb Ax b Ax ALy r ALy− = − − = −

Now, multiplying from the left by L-1, the
following relation is obtained 

( ) 11 1 1 k
0

k 1

e HˆL b Ax L r L ALy y
0 ˆ0 v

− − −

+

β   
− = − = −    α   

where ( k 1 ) k
kH R + ×∈ .

If

k
k 1

y C
y argmin H y e

∈
= −β

then next iterate k 0
ˆx x L y= + obtained by ELMRES.

Using (4), it is concluded that xk minimizes ||L-1(b-Ax)||
on the subspace Kk(A,r0).

In Hessenberg decomposition algorithm, when β = 
hj(j+1) be zero then this reduction process will be
stagnated. To avoid this stagnation, partial pivoting was 
proposed such that the pivoting element β chose as 
follows jk j 1:n

max h ( k )
= +

β = .

By this selection, the ELMRES algorithm does not 
breakdown [5]. 

NUMERICAL TESTS

In this section, ELMRES has tested for solving 
some popular ill-posed problems . For this important, 
the linear system of equation has selected from the 
“Regularization tools” package [4].

Fortunately, this package can be downloaded from 
the internet freely and it is well-known among the 
scientist such that they used these problem in their 
research.   As   it   was   discussed  in  the  first  section,
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regularization  techniques  should  be  used  for  solving 
ill-posed problems. 

In [6] two possible Tikhonov implementations for 
solving ill-posed problems by GMRES were proposed. 

Firstly, the solution of (2) or its equivalence (i.e. 
equation (3)) is computed instead of solving (1)
directly. In second case, two steps should be done. The 
following least square problem 

{ }2 2 k
k 1min H y e y , y R− β + λ ∈ (5)

be solved and after that, let y  be the solution of (5), 
then the next approximation iterate of (1) will be
computed as k 0 kx x v y= + . To apply the first idea for 
ELMRES, a meaningful approximation xk for (1) can 
be computed but unfortunately, the second idea is not 
applicable for ELMRES, practically. 

Then in this experimental work, the first
regularization technique has been chosen. To have a 
more   reasonable   test,  ELMRES  implementation
has  compared  with  GMRES, LSQR and QMR
because these iterative methods are more popular
among  scientists.  GMRES  is  a  powerful method 
which  converges  to  the  solution  quickly.  LSQR [7] 
is  a  Krylov  method  with  low  convergence  speed 
but  the  norms  of  residuals  are  usually decreased.
QMR [3] is a fast iterative method in which it
sometimes converges to the solution faster than
GMRES. These methods were examined by different 
examples  but  in  this paper, just two examples have 
been mentioned. 

For    simplicity,     the    regularization   parameter 
λ = 10-8, the restarted number k = 15 and the tolerance 
eps = 10-13 for these experiments have been considered. 

Example 1: The Fredholm integral equation of the first 
kind,

/ 2

0

K(s,t)x(s)ds b(t), 0 t
π

= ≤ ≤ π∫ (6)

With kernel K(s,t) = exp (s cos(t)), right hand side 
b(t) = 2 sin h(t)/t and solution x(t) = sin(t) is discussed 
by Baart [1]. We use the method code baart from [4] to 
discretize (6) by a Galerkin method with 200
orthonormal  box  function  as  test  and  trial function.
The code produces the matrix A∈R200×200 and a scaled 
discrete approximation of x(τ). Such that x∈R200 is the 
solution of Ax = b.

The numerical comparisons for solving this
problem by the mentioned algorithms are in the Table 1 
and graph.

Table 1: Numerical results for Baart200

Baart200 Error Iterate

ELMRES 6.5624e-015 2
GMRES 7.2717e-015 2
LSQR 7.1975e-015 22
QMR 1.1995e-014 13

Graph 3.2: Numerical residual norms of iterative
methods for solving Baart200

According to Table 1, ELMRES and GM RES have 
been reached to the solution after two iterations with 
the residual norms 6.5624e-015 and 7.2717e-015
respectively. QMR was converged in 13 iterations
while LSQR was closed to the exact solution after 22 
iterations.

The norm of residuals of iterative methods in log10 
is displayed in below. 

From this graph, it is concluded that ELMRES and 
GMRES have been converged too faster than the rest 
methods while QMR and LSQR also converged
quickly.

Example 2: The discretization of a new Fredholm
integral equation of the first kind like (6) with both 
integration intervals equal to [0,1], with kernel K(s,t) = 
(s2+t2)1/2, right hand side 

( )2 3 / 2 31
b(t) (1 t ) t

3
= + −

and with the solution x(t) = t (is discussed by Baker [2]) 
in Matlab code foxgoog from [4] with n = 200 has been 
selected which is a severely ill-posed problem. 

The numerical results for solving this problem by 
the above methods are shown in Table 3. 

In this test, ELMRES converged quickly, while
GMRES  at first had a similar behavior but it reached to 
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Table 3: Numerical results for Foxgood200

Foxgood200 Error Iterate

ELMRES 2.7805e-015 2
GMRES 2.0275e-015 200
LSQR 1.7176e-014 23
QMR 2.2596e-015 14

Graph 3.4: Numerical residual norms of iterative
methods for solving Baart200

the  solution  after  200  iterations such that a stagnation 
was happened from x2 to x200. Again, QMR obtained 
the solution in less repetitions rather than LSQR, but it 
converged slower than ELMRES. The norm of
residuals of iterative methods for solving ill-posed
linear system Foxgood200 is shown as follows. 

From Figure 3.4, it can be seen that GMRES was 
converged to the solution quickly (like ELMRES) in 
first cycle, but later on ELMRES was faster.

CONCLUSION

ELMRES is an oblique projection method which 
can be used to solve ill-posed linear systems. In many 
cases, the convergence speed of ELMRES and GMRES

are approximately equal while ELMRES needs less
arithmetic computations. Numerical results of previous 
section  confirm  that  ELMRES  can  be  used  to solve 
Ax = b problems. Anyhow, ELMRES and GMRES are 
more powerful than LSQR. Behavior of ELMRES and 
GMRES are approximately similar while ELMRES
sometimes are reached to the approximate solution (1) 
in less iterates. Then this method is suggested to use for 
solving linear system of equations.
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