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Discrete Symmetries Analysis of Burgers Equation
with Time Dependent Flux at the Origin
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Abstract: In this work, we consider the Lie's method of infinitesimal transformation groups and discrete 
symmetries method for Burgers equation with time dependent flux at the origin. Following the Lie's
method of infinitesimal transformation groups we determine the symmetry reductions and similarity 
solutions of the governing equation. By applying discrete symmetries analysis we have obtained three 
groups of discrete symmetries which lead to new symmetry reductions and similarity solutions of our 
problem. The analytical solutions which are obtained using symmetries and discrete symmetries are
summarized in table form.
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INTRODUCTION

Burgers equation is a nonlinear parabolic partial 
differential equation which is encountered in the
mathematical modeling of turbulent fluid and shock
waves and considered as one of the fundamental model 
equation in the fluid dynamics to describe the shock 
waves and traffic flows. Burgers [1] introduced a
mathematical model to capture some features of
turbulent fluid in a channel caused by the interaction of 
the opposite effects of convection and diffusion. The
generalized Burgers equation has been studied for its 
solutions by many authors Rao et al. [6], Sachdev et al.
[7] and Vaganan and Kumaran [9]. Clothier et al. [2]
presented analytical constant-flux solution to Burgers 
equation. The initial/boundary value problem for the 
Burgers equation on the semiline is solved with a
flux-type boundary condition at the origin, Biondini and 
Lillo [4]. In 1993, Mittal and Singhal [3] presented a 
numerical approximation of the one dimensional
Burgers equation, they truncated one dimensional
Fourier expansion with time dependent coefficients and 
formulated as the approximated problem which
consisted of a system of nonlinear ordinary differential 
equations for the coefficients. Kutluay et al. [5]
proposed finite-difference solution and analytical
solution of the finite-difference approximations based 
on the standard explicit method to the one-dimensional
Burgers equation which arises frequently in the
mathematical modelling used to solve problems in fluid 
dynamics. Ozis et al. [8] applied a finite element
approach to find numerical solutions for Burgers

equation which used a model problem in turbulence and 
shock wave theory. A numerical study is made for
solving one dimensional time dependent Burgers
equation with small coefficient of viscosity Kadalbajoo
et al. [10].

Symmetry group method plays an important role in 
the analysis of differential equations. The primary
objective of the group classification methods advocated 
by Sophus Lie is to find one-or several-parameter local 
continuous transformations leaving the equations
invariant and then exploit those to obtain the so-called
invariant or similarity solutions Ovsiannikov [11] and 
Olver [13]. Recently, there have been several
generalizations of the classical Lie group method for 
symmetry reductions. Similarity solutions of Burgers 
equation were obtained by Tajiri et al. [12]. Vaganan
and Askan [14] found Direct similarity analysis of
generalized burgers equations. Ibrahim et al. [15]
investigated the similarity reductions for problems of 
radiative and magnetic field effects on free convection 
and mass-transfer flow past a semi-infinite flat plate.
Azad and Mustafa [16] presented symmetry
classification problem for wave equation on sphere.
Also, Vaganan and Kumaran [17] presented similarity 
solutions for the damped Burgers equation with
time-dependent viscosity. Lie symmetry analysis is
performed for the general Burgers equation Liu et al.
[18]. Nadjafikhah and Chamazkoti [19] solved the
problem of the group classification of the general
Burgers equation. Lie point symmetry groups and new 
exact solutions of a (2+1) dimensional generalized
Broer-Kaup system are obtained Wang and Tian [20].
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Discrete symmetries are useful for increasing the 
efficiency of numerical methods for solving differential 
equations, by reducing either the computational domain 
or (for spectral methods) the space of trial functions.
They also arise as hidden symmetries of some boundary 
value problems Crawford et al. [21]. Therefore it is 
important to be able to find discrete symmetries in a 
systematic manner. Some discrete symmetries (such as 
reflections) may be found by inspection or by using an 
ansatz, Olver, [13]. However, it is not generally
possible to calculate all discrete point symmetries,
which are determined by a system of nonlinear partial 
differential equations. In some instances, it is possible 
to use computer algebra to reduce this system to a 
differential Grobner basis, which may be solved more 
easily than the original system Reid et al. [22].

The aim of the present work to obtain the analytical 
solutions of the Burgers equation with time dependent 
flux at the origin using Lie group method. Also by 
using the discrete point symmetries, we introduce new 
group of analytical solutions of our problem. 

MATHEMATICAL SIMULATION

We consider the boundary value problem for
Burgers equation with time dependent flux at the origin 
as following

t xx xu u 2uu ,u u(x,t)= + = (1)

x
u( ,t) limh(x,t)

→∞
∞ = (2a)

2
xu (0,t) u (0,t) g(t), t 0+ = ≥ (2b)

where h (x,t) and g (t) will determined to get similarity 
solutions.

SYMMETRIES

The classical method for finding symmetry
reductions of PDEs is the Lie group method of
infinitesimal transformation Olver [13], Regers and
Ames [23]. We consider the one-parameter Lie group 
of infinitesimal transformation in (x, t, u) given by

* 2

* 2

* 2

x x (x,t,u) O( )

t t (x,t,u) O( )
u u (x,t,u) O( )

= +εξ + ε

= +ετ + ε

= +εη + ε

(3)

where ε is the group parameter. In order to determining 
the point transformation (3), under which (1) is  an 
invariant, the corresponding vector field of the
transformation is written by

X (x,t,u) (x,t,u) (x,t,u)
x t u
∂ ∂ ∂

=ξ +τ + η
∂ ∂ ∂

(4)

and the second prolongation is

(2) x t xx

x t xx

xt tt

xt tt

X X
u u u

u u

∂ ∂ ∂
= +η +η +η

∂ ∂ ∂
∂ ∂

+η +η
∂ ∂

(5)

Equation (1) can be written as

xx x tu 2 u u u 0∆= + − = (6)

The infinitesimals ξ, τ, η of a differential equation 
∆ = 0 of the second order are calculate from the
condition

(2)X ( ) 0, when 0∆ = ∆ = (7)

From Eq. (6) and (7), we get

xx x t
x2 u 2 u 0η + η − η + η = (8)

where

i

i i i j i

J J
J i J jD u D u D , i jχ

χ χ χ χ χη = η − ξ − τ ≠ (9)

Where χi refer to the independent variables. Conditions 
on the infinitesimals ξ, τ and η are determined by 
equating coefficients of like derivatives of monomials 
in ux and ut and higher derivatives by zero. This leads to 
a system of partial differential equations from which we 
can determine ξ, τ and η. Analysis of this system of 
equations leads to an explicit form of ξ, τ and η in the 
form

1 4 2 5

2
1 2 3

1 2 4

1 1
(x,t,u) (cx 4c )t c x c ,

2 2
1

(x,t,u) c t c t c
2

1 1
(x,t,u) (x 2ut)c c u c

4 2

ξ = − + +

τ = + +

η =− + − +

(10)

The infinitesimal generators are

2
1 x t u

2 x t u

3 t 4 x u 5 x

1 1 1
X x t t (x 2ut)

2 2 4
1 1

X x t u
2 2

X , X 2 t , X

= ∂ + ∂ − + ∂

= ∂ + ∂ − ∂

=∂ =− ∂ +∂ =∂

(11)
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DISCRTETE SYMMETRIES

In this section, we will derive the discrete
symmetries of PDE (1), which has a five-dimensional
Lie algebra L of point symmetry generators given in 
(11). We will follow the method presented in Hydon
[24]. By the commutator relation

k
i j ij k[ X , X ] c X , i j, i , j 1,2,...,5= < = (12)

we can get the nonzero commutators in the following
form

1 2 1[ X , X ] X= −

1 3 2[X , X ] X= −

1 5 4
1

[X , X ] X
4

=

2 3 3[X , X ] X= −

2 4 4
1

[X ,X ] X
2

=

2 5 5
1

[X ,X ] X
2

= −

3 4 5[X , X ] 2 X= −

Therefore the nonzero structure constants k
ijc  are 

1 2 3 4
12 13 23 24

5 5 4
34 25 15

1
c 1, c 1, c 1, c ,

2

1 1c 2 , c , c
2 4

= − = − = − =

= − = − =

(13)

Following Hydon (2000), the matrices C(j),
j = 1,2,…,5 are

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0C(1)
0 0 0 0 0

1
0 0 0 0

4

 
 
 
 

=  
 
 
 −
 

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0

C(2) 10 0 0 0
2

1
0 0 0 0

2

− 
 
 
 
 =  − 
 
   

0 1 0 0 0
0 0 1 0 0

C(3) 0 0 0 0 0
0 0 0 0 2
0 0 0 0 0

− 
 − 
 =
 
 
  

0 0 0 0 0
1

0 0 0 0
2

C(4)
0 0 0 0 2
0 0 0 0 0
0 0 0 0 0

 
 
 
 

=  − 
 
 
 

1
0 0 0 0

4
1

0 0 0 0
2C(5)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 
 
 
 − =  
 
 
   

(14)

Exponentiating the matrices εC(j), we get the
adjoint matrices by using the following relation

A(j, ) exp{ C(j)}, j 1,2,...,5ε = ε = (15)

Then we have

2

1 0 0 0 0
1 0 0 0

1 1 0 0A(1, ) 2
0 0 0 1 0

1
0 0 0 1

4

 
 ε 
 

ε ε ε =  
 
 
 − ε  

1
2

1
2

e 0 0 0 0
0 1 0 0 0
0 0 e 0 0

A(2, )
0 0 0 e 0

0 0 0 0 e

−ε

ε

− ε

ε

 
 
 
 
 ε =
 
 
 
  

21
1 0 0

2
0 1 0 0

A(3, )
0 0 1 0 0
0 0 0 1 2
0 0 0 0 1

 −ε ε 
 

−ε 
ε =  

 
 ε
 
 
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1 0 0 0 0
1

0 1 0 0
2

A(4, )
0 0 1 0 2
0 0 0 1 0
0 0 0 0 1

 
 
 ε
 

ε =  − ε 
 
 
 

1
1 0 0 0

4
1

0 1 0 0
2A(5, )

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ε 
 
 − ε ε =  
 
 
   

(16)

After applying the nonlinear constraints
n l m k n
lm i j ij kc b b c b= , Hydon [24] and using the adjoint

matrices to factor out the Lie symmetries, we find three
formulae of the matrix ( l

ib ) that

5
11

3
2 5 4 5 2 1
3 1 3 1 3 3
1 1 1
3 3 3
2 2 4 2

1 2 43 3 3
3 3 31 1

3 3
5
4

1 5 2 5
3 4 3 4

1
0 0 0 b

b

b 1 b 1 4 b b b b
0 1

b 4 b 2 b
B1 1 ( b ) 2 b b

b b b
2 b b

0 0 0 0 b
1 1

0 0 0 b b b b
8 4

 
 
 
 −

− − 
 
 =
 −
 
 
 
 

− 
 

1 4
1 1

4
1 2 1 5 4 2 1
1 3 1 3 1 3 1

1

1 2 2 2 5 1 2 5
1 3 3 3 1 3 31

1
4
4

4
4 2 4
4 3 1

1

b 0 0 b 0
1 1 2b

b b 1 0 b b b b
4 2 b

1 1 1
b (b ) b b b b bB2

2 b 4
0 0 0 b 0

1 b
0 0 0 b b

4 b

 
 
 − + − 
 
 −=  
 
 
 
 −  

2 2 5 2
2 3 51 1 1
1 1 13 3

1 1
3 2 2 5 5 2 2 5
1 1 3 1 1 3

2 3 2
1 1 1

3
51
32 2

1
3 4

4 1 4
4 2

1
3 4
1 4
2 2
1

1 ( b ) 1 b b
b b b

2 b 4 b
2b 1 ( b ) b 1 2b ( b ) b

0 1
b 8 b 2 b

2b
0 0 0 bB3

(b )
4 b b

0 0 0 b
b

2 b b
0 0 0 0

(b )

 
− 

 
 + −
 
 
 =
 
 
 − 
 
 
 
 

Now we try to simplify the matrix B1 by multiplying it by the matrix A(j,ε) and choosing ε appropriately as follows 

1
5 2
11

3
1 12 5 4 5 2 1

3 1 3 1 3 32 2
1 1 1
3 3 3

1 12 2 4 2
1 2 43 3 32 2
3 3 31 1

3 3
1

5 2
4

1 1
1 5 2 52 2
3 4 3 4

1
0 0 e 0 b e

b

b 1 b 1(4b b b b )
0 1 e e e

b 4 b 2 b

1 ( b ) 2 b bB1A(2, ) b e b e b e e
2 b b

0 0 0 0 b e

1 10 0 0 b b e b b e
8 4

εε

− ε εε

− ε ε−ε ε

ε

− ε ε

 
 
 
 − − −
 
 

ε =  − 
 
 
 
 
 − 
 

(17)

So (by choosing 1
3ln bε = ) this equivalence transformation enables us to replace 1

3b  by ±1. Similarly, post-

multiplying B1 by
2
3
1
3

bA(3, )
b

,
5
1

1
3

bA(4, )
2b

and
4
3

1
3

4 bA(5, )
b

 are equivalent to setting 2 5
3 1b 0, b 0= = and 4

3b 0= . So, the 

matrix B1 takes the following form
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5
4

5
4

0 0 0 0
0 1 0 0 0

0 0 0 0B1 , 1
0 0 0 0 b

0 0 0 b 0
8

δ 
 − 
 δ= δ = ± 
 
 δ
 −
 

(18)

Similarly the other two matrices B2,  B3 take the 
following formulae

1 4
1 1

4
1 2 4 2 1
1 3 1 3 1

1

1 2 2 2
1 3 3 1

1

2
3 1

1

b 0 0 b 0

1 2 b
b b 1 0 b b

2 b
1 1B2 b ( b ) b 0 0
2 b

0 0 0 0
10 0 0 b
4 b

 
 
 − 
 
 =  
 
 β
 

β − β 
 

2 2
21
1

2
1

2 2
1

4
4 4
4 2

1
4
4

2 2
1

1 ( b ) b 0 0
2

2
0 1 0 0

b
2

0 0 0 0B3 (b )
4 b

0 0 0 b
b

2 b
0 0 0 0

(b )

 
α α 
α 

 
 
 α
 =
 
 α −
 
 α 
  

The inequivalent discrete symmetries are those
solutions of the following system

i j j
ˆˆ ˆ ˆX x B (x,t,u), i 1,2,...,5, j 1,2,3= ξ = = (19)

where B = B1, B2, B3, 1 2 3
ˆˆ ˆ ˆ ˆ ˆx x , x t, x u= = =  and

1 2 3, ,ξ = ξ ξ = τ ξ = η

First we consider B=B1. By substituting from (10)
and (18) into (19) we obtain the following system

11 1

2 22

2
3 3 3

544 4
4

5 55 5 5
4 4

0 0
ˆˆ ˆX tX x X u 1 1ˆˆ ˆx t u

ˆ ˆˆX x X u 2 2X t
1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆX x X t X u x t t ( x ut )
2 2 4 2ˆˆ ˆX tX x X u b 0 0

ˆ ˆˆX x X uX t 1 1ˆb t 0 b
4 8

δ 
    − − 
  
  
 = δ δ δ − − 
  
  
  
   δ − δ 
 

(20)

The system (20) of first-order PDEs has the
following general solution

5 5 5
4 4 4

1 2 1 1ˆˆ ˆx b x , t , u b x b u t
2 t t 8 4

δ
= − = − = − δ − δ (21)

where 5
4b 0≠ , we can determined this  constant by the 

invariant condition

ˆˆ ˆ ˆxx x t
ˆ ˆ ˆ ˆu 2 u u u 0+ − =

when
xx x tu 2 u u u 0+ − = (22)

It turns out the following constraints

5
41, b 2 2 , 1δ = = β β = ±

Therefore, the first group of discrete symmetries is

1
2 2 2ˆˆ ˆ: (x , t , u ) ( x, , (x 2ut))

t t 4
β β

Γ − − − + (23)

The general solution of the system (19), where B=
B2 is as follows

4
1

1 2
1 3

2(4b x)x̂
b (b t 2)

+β= −
−

1 2
1 3

2 t
t̂

b ( t b 2)
= −

−

2 4 2 2
3 1 3 3

1 1
û b t u b b b x u

2 4
= − β − − β + β (24)

By substituting this result into the invariant
condit ion (22), we obtain

2 1 1
3 1 4b 0, b 1, 1, b= = β = ± = λ

where λ is arbitrary constant. The second group of 
discrete symmetries

2
ˆˆ ˆ: ( x , t , u ) (4 x,t, u))Γ λ+β β (25)

Also, the general solution of the system (19),
where B = B3 is as follows

4 2
44 1
42 2 2 2

1 1

2 b x 2 (t b )ˆˆ ˆx , t , u b u
(b ) (b )
α α −= = − = (26)

Using the invariant condition (22) with (26) we obtain
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4 2
4 1b A, b 2A, 1= = β α =

where A is  an arbitrary constant. Therefore, third group 
of discrete symmetries is

3 2

1 (t 2 A)ˆˆ ˆ: (x , t , u ) ( x, ,Au))
A A

− β
Γ  (27)

NEW GENERATORS FROM 
THE DISCRETE SYMMETRIES

The three groups of discrete symmetries which are 
given in (23), (25) and (27) generate new infinitesimal 
generators which give new similarity transformations. 
The new similarity transformations give new similarity 
and analytical solutions.

By using the discrete symmetries given in Eq.(23). The generators of Eq.(1) which given in (11) become;

2 2
6 x t u3 4 4

2
2 2

7 x t u2 3

8 t2

9 x t u2 3

10 x t2

1 2 2 4 1 1
X ( u x) ( x u ) u t ,

4 t t t 2 2
1 1 1 x 4 1 1 1 1X (( )x ut ) ( x u u t) ( u t x t) ,
t 16 8 t 8 4 4 8

2
X ,

t
4 2 2 2 4 2 2

X ( ) ( u x) t ,
t 4 4 t 2
2 2X x .

t t


= − ∂ + + + ∂ + ∂ 


+= − − ∂ − + + ∂ − + ∂ 



= ∂ 

β β β β β

= − − ∂ + − + ∂ − ∂ 

β β = − ∂ + ∂


(28)

Also, the other two groups of discrete symmetries (25) and (27) transform the generators in (11) to the 
following generators

Table 1: The similarity transformations and the exact solutions for the generator X1 and for the three groups of discrete symmetries

X1
2

1 x t u
1 1 1

X x t t (x 2u t )
2 2 4

= ∂ + ∂ − + ∂

Similarity transformation x 1 1
, u f ( )

t 2 t
µ = =− µ + µ

Similarity representation f' '( ) 2 f ( ) f '( ) 0µ + µ µ =

Similarity solution 2

1 1

c1
f ( ) tanh( )

c c
µ +

µ =

Exact solutions Symm. 2

1 1

x c t1 2
u(x,t) [x tanh( )]

2t c c t
+

=− −

Γ1: 2 1x, u f ( )
2 2
βη = = η

β

2

1 1

2 x 2 c2u(x,t) tanh( )
2 c 2c

β +
=

β

Γ2: 4 x 1 1
, u f ( )

t 2 t
λ+β

η = = − η + η
β β

2

1 1

4 x c t1 2
u(x,t) [4 x tanh( )]

2 t c c t
λ+β +

=− λ + β −
β

Γ3: A x 1 A, u f ( )
2 At 2 A t 2 A

η = = − η + η
− β − β

2

1 1

A x c ( t 2 A)A x 2u(x,t) [ tanh( )]
A c2 2 A 2t c ( t 2 A)

+ − β= −
β − − β



World Appl. Sci. J., 12 (12): 2291-2300, 2011

2297

2
11 x t u

12 x t u

13 x u 14 x

2 2
15 x t u4 6

2
16 x t u 17 t2 4 2

18

1 1 1 1X (2 t xt) t ( x ut) ,
2 2 4 2

1 1
X (2 x) t u ,

2 2
X 2 t , X ,

1 1 1
X (xt 2 A x ) x ( t 2 2 A t 2 A ) (2 2 A u 2 u t x) ,

2A 2A 4
1 1 1 1X x ( 2 A t)t A u , X ,

2A A 2 A
1X

A

= βλ + ∂ + ∂ − β λ + + ∂

= βλ+ ∂ + ∂ − ∂

= − β ∂ +β∂ =β∂

= − β ∂ + − β + ∂ + β − − ∂

= ∂ − β − ∂ − ∂ = ∂

= x u 19 x3

1(2 2 A 2t) A , X .
A















β − ∂ + ∂ = ∂ 


(29)

We note that from the discrete symmetries we get another 13 generators.

Table 2: (For the generator X2 and discrete symmetries)

X2 2 x t u
1 1X x t t u
2 2

= ∂ + ∂ − ∂

Similarity transformation t 1, u f ( )
x x

µ = = µ

Similarity representation 3 2 2 21f' '( ) (4 ) f ' ( ) 2 f ( ) f ' ( ) 2 f ( ) 2 f ( ) 0
2

µ µ + µ − µ − µ µ µ − µ µ + µ µ =

Similarity solution

2 1 1 2 12 2

1 1 1 1 22 2

1 12 2

3 1 3 1
f ( ) (2cKummerU(1 c , , ) c 2cKummerU(c, , )

2 4 2 4
3 1 3 1

2KummerM(1 c , , ) c (2c 1)KummerM(c, , ))/(c
2 4 2 4

3 1 3 1KummerU(1 c , , ) KummerM(1 c , , ))
2 4 2 4

µ = + − +
µ µ

+ − −
µ µ

+ + +
µ µ

Exact solutions Symm.
2 2

2 1 1 2 1
3 x 3 x

u(x,t) (2cKummerU(1 c , , ) c 2cKummerU(c, , )
2 4t 2 4t

= + − +

2 2

1 1 1 1 2

2 2

1 1

3 x 3 x2KummerM(1 c , , ) c (2c 1)KummerM(c, , ) ) /x(c
2 4 t 2 4 t

3 x 3 xKummerU(1 c , , ) KummerM(1 c , , ))
2 4 t 2 4 t

+ − −

+ + +

Γ1:

2 2

2 1 1 2 1

2 2

1 1 1 1

2 2

2 1 1

x 3 x 3 xu(x,t) (2cKummerU(1 c , , ) c 2cKummerU(c, , )
2t 2 4 t 2 4 t

3 x 3 x2KummerM(1 c , , ) c (2c 1)KummerM(c, , ))
2 4 t 2 4t

3 x 3 x/( x(cKummerU(1 c , , ) KummerM(1 c , , )))
2 4 t 2 4 t

=− + + − − −

+ + − − − −

β + − + + −

Γ2:

2 2

2 1 1 2 1

2

1 1 1

2

1 2

2 2

1 1

3 (4 x) 3 x
u(x,t) (2cKummerU(1 c , , ) c 2cKummerU(c, , )

2 4t 2 4t
3 (4 x)2KummerM(1 c , , ) c (2c 1)
2 4t

3 (4 x)KummerM(c, , ))/((4 x)(cKummerU
2 4 t

3 (4 x) 3 (4 x)
(1 c , , ) KummerM(1 c , , )))

2 4t 2 4t

λ + β
= + − −

λ + β+ + − −

λ+β λ+β

λ + β λ + β
+ + +

Γ3:

2 2

2 1 1 2 1

2

1 1 1

2 2

1 2 1

2

1

3 1 x 3 1 xu(x,t) (2cKummerU(1 c , , ) c 2cKummerU(c, , )
2 4 2 4t 2 A t 2 A

3 1 x2KummerM(1 c , , ) c (2c 1)
2 4 t 2 A

3 1 x 3 1 xKummerM(c, , ))/(x(c KummerU(1 c , , )
2 4 2 4t 2 A t 2 A

3 1 xKummerM(1 c , , )))
2 4 t 2 A

= + −
− β − β

+ + − −
− β

+
− β − β

+ +
− β
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Table 3: (For the generator X4 and discrete symmetries)

X4 4 x uX 2 t=− ∂ +∂

Similarity transformation x
t, u(x,t) f ( )

2
µ = = − + µ

µ

Similarity representation f'(µ) f(µ) 0µ + =

Similarity solution 1
1

f ( ) cµ =
µ

Exact solutions Symm. 1
1

u(x,t) (x 2 c )
2 t

=− −

Γ1: 2 2, u f ( )
t t

η = − = − η
β

,

1cu(x,t)
2

=
β

Γ2: 4 x 1
t , u f ( )

2
λ+β

η = = − + η
βη β

,

1
1

u(x,t) (4 x 2 c )
2 t

=− λ + β −
β

Γ3: 2 2
t 2 A x 1, u f ( )

A 2 A A
− βη = = − + η

η

1
A xu(x,t) ( 2 c )

A2( 2 A t)
= −

β −

Table 4: (For χ = X3+cX5 and the discrete symmetries)

χ x tcχ = ∂ + ∂

Similarity transformation x ct , u(x,t) f ( )µ = − = µ

Similarity representation f' '( ) 2 f ( ) f ' ( ) c f ' ( ) 0µ + µ µ + µ =

Similarity solution 2
1

1 1

c1
f ( ) [2tanh( ) c c ]

2c c
µ +

µ = −

Exact solutions Symm. 2
1

1 1

x t c1
u(x,t) [2tanh( ) c c ]

2c c
− +

= −

Γ1: 1 1
( 2 x 2c), u ( x 2 2 f ( ) )

t 2 t
η = − β − = − β + η

β
,

2
1

1 1

2 x c t 21 2 2u(x,t) [x tanh( ) c c ]
2 t c c t

− β + +
=− + −

β

Γ2: 1
4 x c t , u f ( )η = λ + β − = η

β

2
1

1 1

4 x t c1
u(x,t) [2tanh( ) c c ]

2 c c t
λ+β − +

= −
β

Γ3:
2

1 1(A x ( 2 A t)c), u f ( )
A A

η = + β − = η

12
1 1

1 A x t 2 Au(x,t) [2tanh( ) c c ]
2 A c A c

− + β
= −

REDUCTION TO ODEs & EXACT SOLUTIONS

In this section, we present the similarity
transformations and exact solutions for some generators 
given from symmetries and discrete symmetries, as in 
the following tables.

BOUNDARY CONDITIONS

Now we will investigate the case which suitable 
with the condition (2a, b).

(1) For the generator X1, we get 
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x 1 1
, u f( )

t 2 t
µ = =− µ + µ (30)

The system (1), (2) transform to the following 

f' '( ) 2 f ( ) f ' ( ) 0µ + µ µ = (31)

with the boundary conditions

1

2
1

f ( ) A

f (0) 2f'(0) B

∞ =

+ =
(32)

where
1 1

2

A x B 2 t
h(x,t) , g ( t )

2 t 4 t
− −

= =

and A1, B1 are arbitrary constants

(2) For the generator X1 with Γ1: we get

2 x 1
x, u ( t f ( ))

2 2t 2 t
β −

η = = + η + η
β

(33)

The system (1), (2) transform to the following 

f' '( ) 2 f ( ) f ' ( ) 0η + η η = (34)
with

2

2
2

f ( ) 2 A
1 1f ( 0 ) f'(0) B
2 2

∞ = β

+ =
(35)

where
2 2x

limh(x,t) A , g(t) B
→∞

= =

and A2, B2 are arbitrary constants

(3) For the generator X1 with Γ3: we get

Ax 1 A
, u f( )

2At 2 A t 2 A
η = = − η + η

− β − β
(36)

The system (1), (2) transform to the following 

f' '( ) 2 f ( ) f ' ( ) 0η + η η = (37)
with

3

2
3

f ( ) A

f (0) f '(0) B

∞ =

+ =
(38)

Where

3
A x

h(x,t) (A )
2At 2 A

= −
− β

2
32

1
g(t) (B A 2 t 2 A)

(t 2 A)
= − + β

− β

and A3, B3 are arbitrary constants

DISCUSSION AND CONCLUDING REMARKS

In this paper, we have found discrete symmetries of 
the Burgers equation with time dependent flux at the 
origin given in equations (1) and (2). By applying Lie
group method, we have found the infinitesimals  (10)
and its  similarity generators (11) for Eqn. (1).
Furthermore we have got three groups of discrete
symmetries which are Γ1, Γ2 and Γ3  (see Eqns. (23),
(25), (27)). The similarity transformations and the exact 
solutions for some generators and the corresponding 
discrete symmetries are presented in tables.

Table 1; contains the similarity transformation,
the similarity representation and exact solution of
Eqn. (1) for the generator X1. Also, it contains the new 
similarity transformations and new exact solutions
corresponding to the discrete symmetries Γ1, Γ2 and Γ3.

Also, Table 2-4 contain the similarity
transformations, the similarity representations and
exact solutions of Eqn. (1), the new similarity
transformations and new exacnt solutions
corresponding to the discrete symmetries Γ1, Γ2 and 
Γ3 for the generators X2,  X4 and the combination of
X3+cX5 respectively.

The original problem (1) with the boundary (2) has
transformed to the ordinary differential equation (31)
with the boundary condition (32) using the
transformations (30). The other two similarity
representations (34) and (37) are corresponding to the 
discrete symmetries. We have determined the unknown 
functions h(x,t) and g(t) in condition we get similarity 
reduction. The ordinary differential equation (31) with 
the boundary conditions (32) are solved numerical 
and the behavior of the solutions is shown in Fig. 1. 

µ
Fig. 1:
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From Fig. 1 we see the function ƒ(u) decreases with 
increasing of the boundary layer thickness.
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