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Abstract: In this paper, we apply Homotopy Perturbation Method (HPM) to solve nonlinear fractional 
differential equation. Numerical results explicitly reveal the complete reliability and efficiency of the 
proposed algorithm. 
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INTRODUCTION

The fractional derivative has been occuring in
many physical problems such as frequency dependent 
damping  behavior  of  materials,  motion  of  a large 
thin plate in a Newtonian fluid, creep and relaxation 
functions  for  viscoelastic materials, the PIλDµ

controller  for  the  control  of  dynamical  systems  etc. 
[1-4]. Phenomena in electromagnetics, acoustics,
viscoelasticity, electrochemistry and material science
are also described by differential equations of fractional 
order [5-11]. The solution of the differential equation 
containing fractional derivative is much involved. Most 
recently, applications have included classes of
nonlinear Fractional Differential Equations (FDEs) [12] 
and their numerical solutions have been established by 
Diethelm and Ford [13]. Also, the solution of nonlinear 
fractional differential equation has been obtained
through Adomian’s decomposition method [12] and 
Variational iteration method [14]. He [15, 16]
developed the Homotopy Perturbation Method (HPM) 
by merging the standard homotopy and perturbation. A 
wide class of physical problems [17-30] has been
tackled by making an appropriate use of this algorithm. 
The basic inspiration of the prsent study is the
extension of Homotopy Perturbation Method (HPM) for 
fractional differential equations [17]. It is observed that 
the proposed technique is highly suitable for such 
problems and numerical results clearly indicate the
compelete reliability of the suggested HPM. 

MATHEMATICAL DEFINITION

The mathematical definition of fractional calculus 
has been the main subject of many different approaches 
[17]. The left-sided Riemann-Liouville fractional
integral of order q>0 of a function ƒ(x) is defined as:
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and the Riemann-Liouville’s fractional derivative is
defined as
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where n is an integer that satisfies n-1≤q<n.

SOLUTION OF A NONLINEAR 
FRACTIONAL DIFFERENTIAL EQUATION

As an illustration of the present analysis, let us 
consider the HPM for solving the following nonlinear
fractional differential equation:
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According to HPM, we construct the following 
homotopy

1 / 2
2

1 / 2

du d u
p{ 2 u } 0

dt dt
+ − = (2)

Assume the solution of Eq. (2) to be in the form:

2 3
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Substituting (3) into (2) and equating the
coefficients of like powers p, we get the following set 
of differential equations
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Consequently, the first few terms of the HPM 
series solution are as follows: 
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and so on. Hence, the HPM series solution is
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Now, consider the initial value problem for the 
nonlinear fractional differential equation 
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Therefore, the solution of the Eq. (4) is 
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VERIFICATION OF THE SOLUTION

We can look for the solution u(t) of the Eq.(5) in 
the form of the fractional power series:
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with u0 = c, where c is a constant. By substituting (7) 
into (5) and comp aring the coefficients of the results 
fractional power series, we obtain [12]:
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NUMERICAL EAMPLES AND DSCUSSIONS

Assuming c = 1 and retaining upto 5th power of t
in Eq. (8), the truncated fractional power series
becomes
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Table 1:Comparison between HPM-2nd order approximation and 
fractional power series solution (truncated upto 13-terms)

t Power series Absolute
(time) HPM-2nd solution (13 terms) error
0.00 1.000000 1.000000 0.000000
0.01 0.913049 0.912804 0.000245
0.02 0.889257 0.888937 0.000320
0.03 0.874706 0.874525 0.000181
0.04 0.864616 0.864758 0.000142
0.05 0.857224 0.857839 0.000615
0.06 0.851670 0.852877 0.001207
0.07 0.847467 0.849361 0.001894
0.08 0.844317 0.846971 0.002654
0.09 0.842021 0.845495 0.003474
0.10 0.840445 0.844794 0.004349

Table 2:Comparison between HPM-3rd order approximation and 
fractional power series solution (truncated upto 13-terms)

t Power series Absolute
t (time) HPM-3rd solution (13 terms) error
0.00 1.000000 1.000000 0.000000
0.01 0.912799 0.913142 0.000005
0.02 0.888954 0.889583 0.000017
0.03 0.874595 0.874525 0.000070
0.04 0.864911 0.864758 0.000153
0.05 0.858096 0.857839 0.000257
0.06 0.853251 0.852839 0.000374
0.07 0.849854 0.849361 0.000493
0.08 0.847574 0.846971 0.000603
0.09 0.846183 0.845495 0.000688
0.10 0.845522 0.844794 0.000728
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Table 3:Comparison between HPM-4th order approximation and 
fractional power series solution (truncated upto 13-terms)

t Power series Absolute
t (time) HPM-4th solution (13 terms) error

0.00 1.000000 1.000000 0.000000
0.01 0.912803 0.913142 0.000001
0.02 0.888934 0.889583 0.000003

0.03 0.874517 0.874525 0.000008
0.04 0.864746 0.864758 0.000012
0.05 0.857827 0.857839 0.000012
0.06 0.852871 0.852839 0.000006
0.07 0.849369 0.849361 0.000008
0.08 0.846998 0.846971 0.000027
0.09 0.845539 0.845495 0.000044

0.10 0.844840 0.844794 0.000046

We compare the solution (4) by HPM with that of 
Eq. (8) by fractional power series method and the
results are given below in Table 1-3.

From the above three tables we observe that
approximate solution is in good agreement with
truncated series solution. Of course the accuracy can be 
improved by computing more terms in the HPM.

CONCLUSION

The HPM is straightforward, without restrictive
assumptions  and  the  components  of  the series 
solution can be easily computed using any
mathematical symbolic package. Moreover, this method 
does not change the problem into a convenient one for
the use of linear theory. It, therefore, provides more 
realistic series solutions that generally converge very 
rapidly  in  real  physical  problems.  When  solutions 
are   computed   numerically,   the   rapid  convergence 
is  obvious.  Moreover,  no linearization or perturbation 
is required.
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