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Nonlinear Stability of the Cubic Functional Equation 
in Non-archimedean Random Normed Spaces
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Abstract: In this paper, the nonlinear stability of a functional equation in the setting of non-Archimedean
normed spaces is proved. Furthermore, the interdisciplinary relation among the theory of random spaces, 
the theory of non-Archimedean space, the and the theory of functional equations are also presented
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INTRODUCTION

The functional equation

is said to be the quartic functional equation. Skof [1] by
proving that if f is a mapping from a normed space X
into a Banach space Ysatisfying

||f(x + y) + f(x - y) - 2f(x) - 2f(y)||≤ ε

for some ε>0, then there is a unique quadratic
function g: X→Y such that ||f(x)-g(x)|| /2.≤ ε Cholewa
[2] extended Skofs theorem by replacing X by an 
abelian group G. Skof’s result was later generalized 
by Czerwik [3] in the spirit of Hyers-Ulam-Rassias.
The stability problem of the quadratic equation has 
been extensively investigated by a number of
mathematicians and references therein. In addition,
Alsina [4],  Mihet¸ and Radu [5] investigated the
stability in the settings of fuzzy, probabilistic and 
random normed spaces.

In the sequel, the usual terminology, notations 
and conventions of the theory of random normed 
spaces shall be adopted, as in Schweizer and Sklar [6]
and [7-10]. Throughout this paper, the space of all 
probability distribution functions (briefly, d.f.’s) is
denoted by 

{ } [ ]{ }F : R , 0,1:F(0) 0 and F( ) 1+∆ = −∞ +∞ → = +∞ =

note that F is left continuous and non decreasing on R.
Also the subset is the set

( ){ }D F : l F 1+ + −= ∈∆ +∞ =

Here l−ƒ(x) denotes the left limit of the function ƒ at the 
point

( ) ( )t xx,l f x lim f t−
→=

The space ∆+ is partially ordered by the usual 
point-wise ordering of functions, i.e., F≤G if and only if 
F(t)≤G(t) for all t in R. The maximal element for ∆+ in
this order is the d.f. given by

( )0

0, if t 0
t

1, if t 0

≤
ε = 
 >

Definition 1: A mapping T: [0,1]×[0,1]→[0,1] is a
continuous t-norm

If T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a,1) = a for all a∈[0,1];
(d) T(a,b)≤T(c,d) whenever a≤c and b≤d and

a,b,c,d∈[0,1].

Two typical examples of continuous t-norm are 
T(a,b) = ab and T(a,b) = min (a,b)
Now t-norms are recursively defined by T1 = T and

( ) ( )( )n n 1
1 n 1 1 n n 1T x ,...,x T T x,.. . ,x , x−

+ +=

for n≤2 and xi∈[0,1], for all i∈{1,2,…,n+1}
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The t-norm T is Hadzic type if for given ε∈(0,1)
there is ε∈(0,1) such that

( )mT 1 ,...,1 1 , m N− δ − δ > − ε ∈

A typical example of such t-norms is  T(a,b) = min (a,b).
Recall that if  T is a t-norm and {xn} is a given 

sequence of numbers in [0,1], n
i 1 iT x=  is defined

recursively by 1
i 1 i 1T x x= =  and 

( )n n 1
i 1 i i 1 i nT x T T x , x−
= ==

for n≥2. i 1 iT x∞
=  is defined as n

n i 1 ilim T x→∞ =

Definition 2: A non-Archimedean random normed
space (briefly, non-Archimedean RN-space) is a triple 
(X, µ,T), where X is a nonempty set, T is a continuous 
t-norm and µ is a mapping from X into D+ such that, the 
following conditions hold: 

(PN1) µx(t) = ε0(t) for all t>0 if and only if x = 0;
(PN2) µx-y(t) = µy-x(t) for all x,y in X and t≥0;

(PN3) ( )x x
t

tα

 
µ = µ   α 

 for all x in X, α≠0 and t≥0;

(PN4)  for 
all x,y,z∈X and t,s≥0.

Definition 3: Let (X,µ,T) be a non-Archimedean
RN-space.

(1) A sequence {xn} in X is said to be convergent to x
in X if, for every t>0 and ε>0, there exists positive 
integer N such that 

nx x (t) 1−µ > − ε whenever n≥N.
(2) A sequence {xn} in X is called Cauchy sequence if, 

for every t>0 and ε>0, there exists posit ive integer 
N such that 

n mx ,x (t) 1µ > −ε  whenever n≥m≥N.
(3) A non-Archimedean RN-space (X,µ,T) is said to 

be complete if and only if every Cauchy sequence 
in X is convergent to a point in X.

Theorem 4: If (X,µ,T) is a non-Archimedean RN-space
and {xn} is a sequence such that xn→x then

( ) ( )n xn xlim t t→∞ µ = µ .
In this paper, the stability of the quadratic

functional equation in the setting of non-Archimedean
RN-space is established. 

MAIN RESULTS

Definition 4: Let X, Y be vector spaces. The functional 
equation ƒ: X→Y defined by

(1)

is called quartic functional equation.

Theorem 2: Let (X,ν,R) be non-Archimedean RN-
space and (Y, µ, T) be a complete non-Archimedean
RN-space. If ƒ: X→Y be a mapping such that

(2)

(3)
And

Then there exists a unique quartic mapping Q: X→Ysuch that

which

Proof. Putting y = 0 in (2), then

Replacing x by 2x, then,
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Triangular inequality implies that

Thus

Replacing x by 4xand triangular inequality implies that,

Using the induction on n, is obtained that

In order to prove convergence of the sequence , replace x with 2mx in (10) to find that for m,n>0

To prove the uniqueness of the quadratic function, assume that there exists a quadratic function Q′ which 
satisfies (4). Obviously Q(2n x) = 23nQ(x) and Q′(2n x) = 23nQ′(x) for all x∈X and n∈N. Hence it follows from (2.4) 
that

for all x∈X. By letting n→∞, implies that the
uniqueness of Q.
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