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Abstract: We use some theorem of fixed point theory in order to characterization of best simultaneous 
approximation elements of a subset of a normed space. 
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INTRODUCTION

The theory of best simultaneous approximation has 
been studied by many authors [1, 2, 5, 7, 9, 10]. Best 
simultaneous approximation is a generalization of best 
approximation in a sense. In this paper, we shall present 
some results about relation of best simultaneous
approximations and KKM maps.

The structure of the paper is as follows. In Sec. 2 
we give some definitions and preliminary results on 
best simultaneous approximation and fixed point
theory. In Sec.3 we consider an inequality in relation 
with best simultaneous approximation and we provide 
some needs and assumptions for use a nonexpansive
theorem. In Sec.4 we apply KKM-map to get some 
results about simultaneous approximation. We will use 
Ky Fan's theorem for this purpose. We will release
convexity assumption in this section.

PRELIMINARIES

Let X be a normed linear space. For a non-empty
W of X and a non-empty bounded set S in X define

w W
s S

d(S,W) sup S Winf
∈

∈

= −

We recall [3, 7] that an element w0∈W is called a 
best simultaneous approximation to S from W if

0
s S

d(S,W) s wsup
∈

= −

The set of all best simultaneous approximation to S 
from W will be denoted by Sw(S).

Definition 2.1: If for each bounded set S in X there 
exist at least one best simultaneous approximation from 

W to S from W, then W is called a simultaneous 
proximinal subset of X. If for each bounded set S in X 
there exists a unique best simultaneous approximation 
to S from W, then W is called simultaneous Chebyshev 
subset of X. [6] for the following definitions:

Definitions 2.2: A set C in a linear normed space X is 
said to be star-shaped if there is at least one p∈C such 
that (1-λ)p + λx∈C for all x∈C and 0<λ<1. The point 
p∈C is said to be the star center of C. Every convex set 
C is star-shaped but not conversely.

Definitions 2.3: Let C⊆X be a subset of a linear
normed  space  X. Then the  convex  hull  of  C is
defined as co(C) 

i i i ii
{ x : 0 1, 1,x C}= λ ≤ λ ≤ λ = ∈∑ ∑ .

Let (X,d) be a metric space and let CB(X) denote 
the family of all nonempty, closed bounded subsets of 
X. For A, B∈CB (X), the Hausdorff metric, denoted by 
H(A,B), is defined by

a A b B

H(A,B) max{ d(a,B), d(b,A)}sup sup
∈ ∈

=

When (X, d) is a complete metric space, then so is 
(CB(X), H). Let X and Y be two sets. A multifunction 
(set-valued map) F from X to Y, denoted by F: X→Y,
is a subset F⊆X×Y. The value of F are the sets F(x) = 
{y∈Y: (x,y)∈F}. For A X⊆  the set

1
x AF(A) U F(x) {y Y : F (y) A 0}−
∈= = ∈ ∩ ≠

is called the image A under F.
A multifunction F: X→CB(X) is called

nonexpansive if H(F(x), F(y))≤d(x,y).
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Let X be A linear normed space, W a nonempty 
subset  of  X  and  S  a  bounded set in X. In addition,
let r = d(S,W). We  consider  the  following  inequality 
in this section:

s S

S W r x wsup
∈

− ≤ + −

It is clear that if x = w be a solution for this 
inequality, then x∈SW(S). Define the multifunction
F:W→2W by

s S

F(x) {w W : s w r x w }sup
∈

= ∈ − ≤ + −

Lemma 2.1: Let X,W, S are as above and x∈W such 
that F(x) = φ. Then W is simultaneous Chebyshev and 
simultaneous proximinal set. (In other word if there
exist x∈W such that

s S

r x w s w ; fora llw Wsup
∈

+ − < − ∈

is hold. Then W is simultaneous Chebyshev and
simultaneous proximinal set.)

Proof 2.2: Let w1∈W is arbitrary. Then by the
definition of r and also by the suppose their exist ν1∈W
such that 

0 1 1
s S s S

s v r x w | x wsup sup
∈ ∈

− ≤ + − < −

So we can define a sequence as the following.
Let w1, arbitrarily, is selected and so we have v1 as 

above. Now for ν1∈W we have ν2∈W such that 

2 1 1
s S s S

s v r x v | x vsup sup
∈ ∈

− ≤ + − < −

With continue to this procedure we have a
decreasing bounded sequence, {x-νn}, in R. Therefore it 
is convergent to zero. we have

n 1 n
s S

s v r x vsup +
∈

− < + −

So when n tend to the infinite follows that

s S

s x rsup
∈

− ≤ . That is x∈SW(S). If 

Wx,y S (S)andx y then∈ ≠

s S

r x y s y r x y 0sup
∈

+ − < − = ⇒ − <

This is a contradiction and so W is a simultaneous 
Chebyshev set.

Lemma 2.3: Let X,W,S are as the above lemma. If
x∈SW(S) then

s S

r x w 3 | s w f o r a l l w Wsup
∈

+ − ≤ − ∈

Proof 2.4: For each w∈W we have 

s S s Ss S
r sup | s w andsup s x sup s w∈ ∈∈
≤ − − ≤ −

Hence
r x w r | x s w s+ − ≤ + − + − ≤

s S s S s S

r s x s w 3 s wsup sup sup
∈ ∈ ∈

+ − + − ≤ −

Let  A  is  a  nonempty  subset  of  a  metric space 
(X, d). We recall that the diameter of A, denoted 
diamA, is defined by diam A = sup {d(x,y): x,y∈A}

Corollary 2.5: Let X,W,S are as the above lemma.
Then diam SW(S)≤2r.

Proof 2.6: If x,y∈SW(S) then, by the above lemma, we 
have ||x-y||≤2r. Now the state is clear.

In view of the lemma 2.1 we consider the
following states:

Remark 2.1 

1.
s S

x W; w W;r x w s w (equivalentlyF(x) W)sup
∈

∃ ∈ ∀ ∈ + − ≥ − =

2.
s S

x W; w W;r x w s w (equivalently F(x) )sup
∈

∃ ∈ ∀ ∈ + − ≤ − = φ

3.
s S

x W; w W; s w r x w (equivalently F(x) )sup
∈

∀ ∈ ∃ ∈ − ≤ + − ≠ φ

4.
s S

x W; w W;r x w s w r x w (equivalently F(x) W)sup
∈

∀ ∈ ∃ ∈ + − ≤ − ≤ + − ≠
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In (1), (4) and in the some of the remained cases, 
similarly to the argue in the proof of the lemma 2.1, we 
can show that x∈SW(S) and so W is simu ltaneous
proximinal set. (2) is the lemma 2.1. We consider 3 in 
the next section.

APPLICATION OF FIXED POINT THEORY

We need the following result.

Theorem 3.1: [6] Let X be a Banach Space, W a
nonempty closed and star-shaped subset of X and F: 
W→2X a nonexpansive mapping such that (x,y]∩W≠φ
for all x∈W and y∈F(x), where (x,y] = {(1-α)x+αy,
0<a≤1}.  Further,  assume  that  F(W) is bounded and 
(I-F)(W) is closed. Then F has a fixed point.

Lemma 3.2: Let W is a closed bounded set of linear 
normed space X such that the inequality 3, in the above 
remark, is hold. Let S is a bounded set of X and define

s S

F(x) {w W : | s w r x w }sup
∈

= ∈ − ≤ + −

Then for each x∈W; F(x)∈CB(X).

Proof 3.3: By the definitions of CB(X) and for each 
x∈W we show that 

• F(x) is nonempty.
• F(x) is bounded
• F(x) is closed

By the inequality 3, in the above remark, state (1) 
is true. Since F(x)⊆W so (2) is true.

For (3): Let {wn}⊆F(x) and wn→w0. We show that 
w0∈F(x). Since W is closed so w0∈W. For each s∈S
we have

0 n n 0s w s w w w− ≤ − + −

Therefore

s S 0 s S n n 0sup s w sup s w w w∈ ∈− ≤ − + −

So when n is sufficiently large we have

0 n 0 0 n
s S s S

s w s w r x w w wsup sup
∈ ∈

− ≤ − ≤ + − + −

So when n→∞ result that sups∈S||s -w0||≤r+||x-w0||
So hence w0∈F(x) and F(x) is closed.

Proposition 3.4: Let S be a bounded subset of Banach 
space X,W a nonempty bounded, closed and star-
shaped subset of X. Let 

s WF(x) {w W:sup s w r x w }∈= ∈ − ≤ + −

such that:

1. Inequality 3, in the above remark, is hold.
2. supx∈W H(F(x), S)≤α<∞
3. There exist a>0 such that

if x y a then F(x ) F(y);x,y W− ≤ = ∈

4. 2α≤a
5.  (I-F)(W) is closed.

Then W is a simultaneous proximinal set.

Proof 3.5: By the assumption (1) F(x)≠φ and by the 
lemma 3. F(x)∈CB(X) view to (2). Since F(x)⊆W so 
clearly the condition 3 is hold. Let x,y∈W. If ||x-y||≤a
then  F(x)  =  F(y) and therefore H (F(x), F(y)) = 0. So 
H (F(x), F(y)) = 0≤ ||x-y||. If a≤ ||x-y|| then by (4),

H(F(x),F(y) H(F(x),S) H(S,F(y)) 2a a x y≤ + ≤ ≤ ≤ −

Therefore, by the theorem 3.1, F is a nonexpansive 
multifunction map and has a fixed point as x∈F(x).
That  is x∈SW(x)  and  W  is  a  simultaneous 
proximinal set.

Remark 3.1: Every one of the assumptions listed in the 
proposition may be replace with other various
assumptions. For example if W be contained in a finite 
dimensional subspace or it is contained in a compact 
subset or, even, it is contained in a weakly compact 
subset of X then (I-F)(W) is closed. At least in LP space 
condition (3) means that the set {w∈W: F(x)≠F(y)} is 
negligible set.

Example 3.1: If in the above proposition we assume 
that  W  is  contained  in  a  weakly  compact  subset  of 
X, then (I-F)(W) is closed.

Proof 3.6: See chapter 1, theorem 1.92 of [6].

APLICATION OF KKM-MAP PRINCIPLE

Knaster, Kuratowski and Mazurkiewicz proved a 
very important result (KKM theorem) in 1929,
presently  it  is  known  as the KKM-map principle. See
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example of KKM-maps in [4]. We give an example of 
KKM-map and apply it to the best simultaneous
approximation.

Definition 4.1: [6]  Let  W  be  a  nonempty  subset  of 
X. A map F: W→2X is called a KKM-map if

n
1 n i 1 ico{x , . . . , x } F ( x )=⊆ ∪  for each finite subset x1, …, xn

of X.
Observe that if F is a KKM-map, then x∈F(x) for 

each x∈X. It is clear that F(x) in the previous section is 
not a KKM-map. The following well known result was 
established by ky Fan.

Theorem 4.1: [6] Let W be a subset of a Hausdorff 
topological vector space X and let T: W→2X be a 
closed-valued KKM-map. If T(x0) is compact for at 
least one x0∈W then ∩w∈W T(w)≠φ.

Lemma 4.2: Let X is a linear normed space, W is a 
closed and convex subset of X and S is a bounded 
subset of S such that W∩S = φ. Define G:W→2W by 

s S s SG(x) {w W:sup s w sup s x }∈ ∈= ∈ − ≤ −

Then G is a closed- valued KKM-map.

Proof 4.3: Let x1,…, xn∈W and a∈ co{x1,…, xn}. Then 
there are a1,…, an∈ [0,1] with n

ii 1
a 1

=
=∑  such that 

n
i ii 1

a a x
=

= ∑ . For a suitable permutation of x1,…, xn
which we show it again with x1,…,xn we have

1 n
s S s S

s x ... s xsup sup
∈ ∈

− ≤ ≤ −

So
n n n

i i i i i
i 1 i 1 i 1

n n

i n n i n
i 1 i 1s S s S s S

s a s x s x

s x s x s xsup sup sup
= = =

= =∈ ∈ ∈

− = α − α ≤ α − ≤

α − ≤ − α −

∑ ∑ ∑

=∑ ∑

Therefore sups∈S||s -a||≤sups∈S||s -xn||. That is
a∈G(xn) and therefore n

i 1 ia G ( x )=∈∪ .Let x∈W. We
show that G(x) is a closed subset of X. Let the sequence 
{wn} tend to w0 and wn∈G(xn). Since W is closed so 
w0∈W. For each s∈S we have

0 0 n n n n 0s w s w w w s w w w− = − + − ≤ − + − .
Hence

0 n n 0
s S s S

s S n 0

s w s w w w

sup s x w w

sup sup
∈ ∈

∈

− ≤ − + −

≤ − + −

So when wn→w0 follows that sups∈S||s -w0||≤sups∈S||s -x||.
That is w0∈G(xn) and G(xn) is closed.

Now, by using of the theorem 4.1, we get some
result from the lemma 4.2 as the following

Corollary 4.4: Let W is a closed and convex subset of 
linear normed space X and S is a bounded subset of X 
such that W∩S = φ. Define F:W→2W by F = (x) = 
(w∈W: sups∈S||s -w||≤sups∈S||s -x||). If there exist x0∈W
such that F(x0) is compact then W is simultaneous 
proximinal set of X.

Proof 4.5: By the lemma 4.2 all condition of the
theorem 4.1 are holds. Therefore ∩x∈X F(x)≠φ. Let 
w∈∩x∈X F(x) and x∈W then, we have x∈F(x). Hence 
for each x∈W, we have sups∈S||s -w||≤sups∈S||s -x||. So 

0s S w W s S 0sup s w inf sup s w r∈ ∈ ∈− = − =

That is w∈SW(S)W and W is a simultaneous
proximinal set.

Corollary 4.6: Let W is a closed and convex subset of 
linear normed space X. If F(x), KKM-map in the
lemma 4.2, is finitely closed. Then W is simultaneous
proximinal set.

Proof 4.7: In fact it is an extension of theorm 4.1 [4]. 
By this extension, again, we have ∩x∈X F(x)≠φ.
Therefore, similarly argue in the above lemma,
SW(S)≠φ. (A subset W⊆X is finitely closed if its
intersection with each finite dimensional linear
subspace  L⊆X  is  closed  in  the  Euclidean  topology 
of L.)

Remark 4.1: There are various extension of the
theorem  4.1,  presented,  by  Granas  [4]  and  that  all 
of them give information about simultaneous
proximinal sets.
we have a trivial case that result also form 4.4:

WF(x) {x}ifandonlyifx S (S)= ∈ .
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