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Abstract: This paper intends to make an overview of two-dimensional systems . Recently, 2-D systems
play very important role in industry. As a result, it is of great importance to pay more attention to this kind 
of dynamics. Generally, in the 1-D systems the various quantities are the function of time. On the other 
hand in many phenomena in the nature, some quantities are function of two independent variables which 
mainly none of these two variables is time. Consequently, for modeling of these phenomena which have 
two independent variables, the 2-D signals and systems are used. In this kind of systems the process is done 
in two independent coordinate axes. In this article, 2-D systems and their specifications are studied briefly. 
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INTRODUCTION

In the theory of 1-D systems, generally various 
quantities are functions of time. For instance, the
electrical potential of an electrical capacitor is only a 
function of time. On the other hand many phenomena in 
the nature have quantities which are function of two 
independent variables and generally none of them is 
time. As an example, the intensity of an image is
function of horizontal and vertical axes of image. In this 
case, for modeling of this kind of systems 2-D signals 
are  used. In  these  systems  the  processing  operation
is done in two independent axes. The main applications 
of 2-D systems are such as distributed systems, heat 
transfer, image processing, biologic systems,
earthquake  signals  processing, sonar etc. To describe 
2-D systems in addition to state space equation, transfer 
functions and difference equations are also used [1]. 
Similar to 1-D systems, if the system is time variant, 
state space equation or difference equation is used. For 
various applications, one of the description methods is 
used. For examp le  in  the  case  of  stability analysis of 
2-D systems, generally state space equation and transfer 
function are used [1, 2]. Also for issues such as state 
and parameter estimation, state space equation and 
difference equation are used [3-10]. For optimal control 
of 2-D systems, mostly state space equation form has 
been used [11-15]. The organization of this paper is as 
follows: Section 2 presents the 2-D system various 
descriptions. In section 3, the WAM model of 2-D
systems is studied. In section 4, stability analysis, 
controllability and observability and minimality are
given. Finally conclusion is presented.

D SYSTEMS DESCRIPTIONS

As it was mentioned previously, for describing the 
2-D systems there are some methods. In this section 
these descriptions are introduced.

Transfer  function:  For finding  the  transfer  function 
of  discrete  2-D  systems,  similar  to  1-D systems the 
z-transform   is  used.  In  this  case,  it  is  called  2-D
z-transform [1]. The general form of transfer function is 
as follows

N(z,w)
P(z,w)

D(z,w)
= (1)

Which z and w are the shift operator of horizontal 
and vertical axes respectively. Also N(z, w) and D(z, w) 
are polynomials based on z and w. For instance,
consider the following transfer function

1 zw z w
P(z,w)

2 z w
+ − −

=
− −

The roots of numerator and denominator of transfer 
function are considered as zeros and poles of 2-D
system respectively. 

Difference equation: Difference equation for a 2-D
system is as follows

y(m,n) ay(m 1,n) by(m,n 1) cy(m 1,n 1) ...
du(m 1,n) eu(m,n 1) ...

= − + − + − − +
+ − + − +

(2)
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where u and y are the input and output of system
respectively. Also this system is assumed linear. With 
taking the z-transform of above equation the transfer 
function is obtained. In the case that the mentioned 2-D
system is stochastic this form is known as ARMA 
model.

State space equation: One of the most significant
points of the subject of 2-D systems is the multiplicity 
of presented models for state space equation. This fact 
is due to this point that in this equations local state 
vector is used instead of state vector because 2-D
systems have state vectors with infinite dimension.
These models include GR (Givone-Roesser) model
[16], FM (Fornasini-Marchesini) model [17], Attasi
model [2], MFM (Modified FM) model [18] and FTR 
(Fundamental Transition Matrix) model [18]. In the
model which was introduced in 1984 by Porter and 
Aravena [18] a 1-D expression for 2-D systems was 
presented. This model was named WAM (Wave
Advanced Model) and is used for consideration of some 
2-D problems such as stability problem. In [2] this issue 
is studied. In the following different models for 2-D
systems description are presented.

GR model: This model was introduced in 1972 by 
Givone and Roesser [16]. This model was used in 
consideration of recursive 2-D systems . After that GR 
model is used in other problems such as stability, image 
processing, control and prediction. 

This model has the following formulation

h h
1 2 1

v v
3 4 2

A A Bx (i 1,j) x (i,j)
u(i,j)

A A Bx (i,j 1) x (i,j)
    +  

= +      +      

h

1 2 v

x (i,j)
y(i,j) [C C ]

x (i,j)
 

=  
 

(3)

where xh∈Rn and xv∈Rm are local horizontal state
vector  and  local  vertical state vector respectively. 
Also u and y are respectively the input and output 
vectors of system. i and j are the indices in horizontal 
and  vertical  direction.  Matrices  A,  B  and  C 
generally  are  functions  of  i  and  j.  As  can  be  seen 
the   local  state  vector  in  every  point  is  dependent 
to  the  previous  state  vectors  located  in a cell before 
the  recent  point. This matter is known as First
Quadrant  Causality. More  information  about  this 
issue is found in [1].

FM model: This model was introduced by Fornasini 
and Marchesini in 1972 [17]. The formulation of this 
model is as follows

1 2

0

x(i 1,j 1) Ax( i 1,j) A x ( i , j 1)
Ax(i , j ) Bu(i,j)

+ + = + + +
+ +

y(i,j) Cx(i,j)= (4)

where, x∈Rn, u∈Rp and  y∈Rq are respectively local 
state, input and output vectors. This relation is a
recursive 2-D equation.

Attasi model: Attasi introduced this model in 1976 [2]. 
This model is as follows

1 2

1 2

x(i 1,j 1) A x(i,j 1) A x ( i 1,j)
A A x( i , j ) Bu(i,j)

+ + = + + +
− +

y(i,j) Cx(i,j)= (5)

where, x∈Rn, u∈Rp and y∈Rq are respectively local 
state, input and output vectors. This model is a special 
case of FM model, where the following condition is 
considered

0 1 2 2 1A A A A A= − = −

MFM model: This model is introduced in [18] for the
first time by Porter and Aravena in 1984. This model 
has the following form

x(i 1,j 1) Jx(i,j 1) Kx(i 1,j)
Eu(i,j 1) Fu(i 1,j)

+ + = + + +
+ + + +

y(i,j) Cx(i,j)= (6)

The most significant characteristic of this model is 
that the order of the equation is one.

FTR model: This model is introduced simultaneously 
in 1987 by Porter, Aravena [18] and Kaczorec, Kurec 
[19]. The form of this model is as follows

10 01

00 10 01

x(i 1,j 1) J x(i 1,j) J x(i,j 1)
K x(i,j) E u(i 1,j) E u(i, j 1)

+ + = + + +
+ + + + +

y(i,j) Cx(i,j)= (7)

This model is second degree and also is First
Quadrant Causal.

1-D FORM OF 2-D SYSTEMS

Porter and Aravena introduced this form (1-D form 
of  2-D systems) called WAM model in 1984 [18]. In 
this model the 2-D systems are considered as advanced 
wave. Obviously, because the dimension of state
vectors  of  2-D systems is infinite, the dimension of 
defined  state  vector  in this model is huge. Despite this
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problem because of the possibility of generalization of 
some characteristics of 1-D systems to 2-D systems this 
model is of great importance. In this model with the 
proper classification of local state vectors of a 2-D
system a novel form of local state vectors is achieved. 
In [20], it is presented that the new vector has more 
capability in the terms of controllability and
observability, compared with state vectors in mentioned 
2-D models.

The 1-D WAM model of MFM model: If the MFM 
model is considered as follows

x(i 1,j 1) Jx(i,j 1) Kx(i 1,j)
Eu(i 1,j) Fu(i,j 1)

+ + = + + +
+ + + +

(8)

With introducing the following vectors

x(n,0)
x(n 1,1)

(n)

x(0,n)

 
 − φ =
 
 
 


 and 

u(n,0)
u(n 1,1)

v(n)

u(0,n)

 
 − =
 
 
 



In this case, it is obvious that 

(n 1) A(n) (n) B(n)v(n)φ + = φ + (9)

Where A(n) and B(n) are as follows

J 0 0 0 0
K J 0 0 0
0 K J 0 0

A(n)

0 0 0 K J
0 0 0 0 K

 
 
 
 

=  
 
 
 
  





 



and
E 0 0 0 0
F E 0 0 0
0 F E 0 0

B(n)

0 0 0 F E
0 0 0 0 F

 
 
 
 

=  
 
 
 
  





 



The dimensions of above matrices are

A(n):[(n 1).T].[(n 1).T]
B(n):[(n 1).T].[(m 1).P]

+ +
+ +

where T and P are respectively the dimensions of x and 
u in the MFM model. This method is also usable for 
time varying 2-D MFM model.

Furthermore, it is possible to assume the local state 
vectors on the horizontal and vertical axes as the
boundary conditions. In this case, in φ(n), x(n,0) and 
x(0,n) is removed from the beginning and end. If the 
primary 2-D system was nonlinear, it is possible by 
defining the new state vector as above to have a 1-D
nonlinear model. 

According  to  the  mentioned  definitions,  it  is 
seen  that the  dimensions  of  the  state  and input 
vectors in this model depends on the index n. It means 
that by increasing n the matrices’ dimensions become 
greater. On the other hand, matrix A (n) unlike the
situation  in  1-D  system  has  a  rectangular  shape
and its dimensions increase with increasing n. Hence, 
despite the 1-D form of equations in the WAM model, 
many results of 1-D systems are not easy to generalize 
to this model. 

The 1-D WAM model of GR model: The GR model 
was introduced in (3). Defining new vectors as follows

v

h

v

h

x (0,n)
x (1,n 1)

(n) x (1,n 1)

x (n,0)

 
 − 
 φ = −
 
 
 
 


,

u(0,n)
u(1,n 1)

v(n)

u(n,0)

 
 − 
 =
 
 
  




,

y(0,n)
y(1,n 1)

(n)

y(n,0)

 
 − µ =
 
 
 


,

h

v

x (0,n)
f(n)

x (n,0)
 

=  
 

then, it is obtained

(n 1) A(n) (n) B(n)v(n) E(n)f(n)φ + = φ + +

(n) C(n) (n) D(n)v(n) H(n)f(n)µ = φ + + (10)

Where

4

2

3 4

1 2

3 4

1 2

3

1

A 0 0 0 0 0
A 0 0 0 0 0
0 A A 0 0 0
0 A A 0 0 0

A(n)
A A 0
A A 0

0 0 0 A
0 0 0 A

 
 
 
 
 
 
 =
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2

1

2

1

3

1

B 0 0
B 0 0
0 B 0

B(n) 0 B 0

0 0 A
0 0 A

 
 
 
 
 

=  
 
 
 
 
 






 



2

1 2

1 2

1

C 0 0 0 0 0
0 C C 0 0 0

C(n)
0 0 0 C C 0
0 0 0 0 0 C

 
 
 
 =
 
 
  




 



3

1

3

1

A 0
A 0
0 0

E(n)

0 A
0 A

 
 
 
 

=  
 
 
 
  

 
,

1

2

C 0
0 0

H(n)

0 C

 
 
 =
 
 
 

 

The dimensions of above matrices are as follows

A(n):{[(n 1).(h v)].[(n).(h v)]}
B(n):{[(n 1).(h v)].[(n 1).(m)]}
C(n):{[(n 1).(p)].[(n 1).(h v)]}
E(n):{[(n 1).(h v)].[(h v)]}
H(n):{[(n 1).(p)].[(n 1).(m)]}

+ + +
+ + +
+ + +
+ + +
+ +

where h,v,m and p are the length of the horizontal and 
vertical state vectors, input and output vector of GR 
model respectively. In this case, obviously the
dimensions of matrices increase with increasing n. The 
significant point in the WAM model of MFM and GR 
model of 2-D systems is that these models are first 
order. While, for other models of 2-D systems the 
WAM forms are second order [2].

The 1-D WAM model of FTR and FM models: In 
[18], the FTR model for a 2-D system was introduced. 
This model is as follows

10 01

00 10 01 00

x(i 1,j 1) J x(i 1,j) J x(i,j 1)
K x(i,j) E u(i 1,j) E u(i, j 1) F u(i,j)

+ + = + + + −
+ + + + −

(11)

In the case of time varying systems the matrices J10,
J01, K00, E10, E01 and F00 are functions of the indices i 
and j. In [18], to determine the WAM model of above 
2-D system, the state vector φ(k) is defined as follows

(k) Col[x(k,0),x(k 1,1),...,x(0,k)]φ = − (12)

where Col stands for column  vector. In this case, the 
resulting WAM form is as follows

(n 1) J(n) (n) K (n 1) (n 1)
E(n)v(n) F (n 1)v(n 1)

−

−

φ + = φ + − φ −

+ + − −
(13)

where

v(n) Col[u(n,0),u(n 1,1),...,u(0,n)]= − (14)

01

10 01

10 01

10

E 0 0 0
E E 0 0

E(n)
0 0 E E
0 0 0 E

 
 
 
 =
 
 
  




 



01

10 01

10 01

10

J 0 0 0
J J 0 0

J(n)
0 0 J J
0 0 0 J

 
 
 
 =
 
 
  



 

K (n 1) I(n)K(n 1)− − = −

F (n) I(n)F(n 1)− = −

00K(n) diag[K ]= −

00F(n) diag[F ]= −

and

n

0 0
I(n) I

0 0

 
 =  
  


 



According to (13) it is obvious that by defining the 
following  vector  the  obtained model is converted to a 
1-D equation

r(n) K(n 1) (n 1) f(n 1)v(n 1)= − φ − + − − (15)

The obtained state vector equation is as follows

(n 1) J(n) I(n) (n) E(n)
V(n)

r(n 1) K(n) 0 r(n) F(n)
φ + φ       

= +       +       
(16)

As can be seen from definition (13), instead the 
local state vectors in (16) to be in the form of a column 
vector, in fact we will have the linear combination of 
these vectors.

In the terms of problems such as optimal control 
and     state    vector    estimation,    having   state  space
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equations with direct access to the state vector is 
required. To illustration, we consider the issue of
optimal state estimation. In the problem of state
estimation at each stage of estimation φ(n+1) and 
r(n+1) are determined. If the matrix K00(i,j) has inverse 
in all points, with having r (n+1), φ(n) also can be 
estimated. But if K00(i,j) does not have inverse in some 
points, this action will be impossible. In the following, 
by changing the definition of state vector a 1-D sate 
space equation is obtained where direct access to the 
state vectors φ(n) and φ(n+1) is possible.
We define the state vector as follow

(n) Col[x(n,0),x(n 1,1),...,x(0,n)]φ = − (17)

Also the input vector is defined similar to the
relation (17). With this definition, the 1-D state space 
equation is as follows

(n 1) A(n) (n) B(n)v(n)φ + = φ + (18)

Where

01

10 00 01

10 00 01

10

J 0 0 0 0 0
I 0 0 0 0 0

J K J 0 0 0
0 0 I 0 0 0

A(n)
0 0 0 I 0 0
0 0 0 J K J
0 0 0 0 I 0
0 0 0 0 0 J

 
 
 
 −
 
 
 =
 
 
 − 
 
 
 






  





01

10 00 01

10 00 01

10 00 01

10 00

E 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

E F E 0 0 0 0 0
B(n) 0 0 E F E 0 0 0

0 0 0 0 0 E F E
0 0 0 0 0 0 E F

 
 
 
 −
 

= − 
 
 

− 
 − 






 



(19)

To sum up, the positive points of relation (18) in 
comparison with (16) are as follows

• In relation (18) the state space vector φ(n+1)
includes local state vectors x, whereas in relation 
(16) there is linear combination of vectors x and 
disturbance input ν.

• The state matrices in relation (18) are iterative.
While, in relation (16) such a situation can not be 
observed.

• In the issues such as optimal control and optimal 
state estimation, with using relation (18) there is no

Fig. 1: The shape of vector φ

need to additional calculations in comparison with 
using relation (16). If matrix K00(i,j) is singular
using relation (16) will be combined with problem. 
According to the definition of vector φ, this vector 
has the following shape.

As can be seen, in this definition instead of using 
local vectors on the line i+j=n+1, local vectors are used 
as one among on the mentioned line and on the line 
located one stage before (i+j = n).

• Generally, for WAM description of 2-D systems 
which are at least second order using this method is 
useful. For instance, the 2-D ARMA model as the 
following relation

1 2 1 2N N M M

ij ij
i 1 j 1 i 1 j 1

y(m,n) c y(m i,n j) d u ( m i,n j)
= = = =

= − − + − −∑∑ ∑∑ (20)

w(k) and x(k) are defined as follows

x(k) Col[ (k), (k 1),..., (k d)]= φ φ − φ − (21)

w(k) Col[v(k),v(k 1),...,v(k l)]= − − (22)

Vectors φ and ν are defined as the proper
definitions of WAM for u and y. Also, l and d are 
respectively the length of the first and second above 
summations. In this case, a relation as (18) can be
written again.

STABILITY, CONTROLLABILITY, 
OBSERVABILITY OF 2-D SYSTEMS

About the stability of 2-D systems because of its 
importance a wide range of research were done [2, 21-
26]. In [2, 21, 22], the stability analysis is done on the 
basis of WAM model. The technique that used in this 
method is the use of ‘norm’. In [23-26], the presented 
results are for linear systems with constant coefficients. 
In  this  situation,  the  stability  analysis  has been done



World Appl. Sci. J., 12 (12): 2233-2239, 2011

2238

with considering the position of poles of transfer
function to the unit circle. To describe the stability
issue, in the first place its definition is given.

Definition 1: BIBO stability (Bounded Input Bounded 
Output): A 2-D system is BIBO stable if for every 
bounded input u(m,n) the output y(m,n) is bounded.

Like 1-D systems, if the output of system achieves
zero, the system will be asymptotically stable.

Theorem 1 [23]: A 2-D system is BIBO stable, if and 
only if its sequence of impulse response is an
‘absolutely bounded sequence’.

In the following, a special property of the 2-D
systems which plays an important role in the stability 
issue will be presented.

Definition 2: If H(z,w) is the transfer function of a 2-D
system,  then   the   common   and   non-removable
roots of  numerator  and  denominator  of  the transfer 
function are called the second type of unessential
singularity. For instance, consider the following
polynomials  as  the  numerator  and  denominator  of 
the transfer function

N(z,w) (1 z)(1 w)= − −

D(z,w) 2 z w= − −

It is seen that z = w = 1 is the common points 
between N and D and at the same time it can not be 
removed from numerator and denominator. 

Theorem 2 [24]: If H(z,w) is the transfer function of a 
2-D  system, then  its  poles  are  located  out  of  unit 
circle T, as the following. Also, it does not have the 
second type of unessential singularity located on the 
boundary of T.

T {(z,w) z 1, w 1}= < <

As  a  result,  one  of  the  most  significant 
problems in  determination  of  the  stability  of  2-D
systems  is to  determine  the  location  of  the  poles to
the  T and to consider the second type of unessential 
singularity.

Theorem 3 [25, 26]: The 2-D polynomial D(z,w) will 
not have any roots in the region T, if and only if:

• D(0,w) is non-zero in the region |w|≤1.
• D(z,w)  is  non-zero in the region |w|=1 and (|z|<1 

or |z|=1).

With this method, 1-D techniques such as ‘Juri test’ 
can be used to fulfill the first condition. In this regard 
another theorem is expressed in the following.

Theorem 4 [27]: 2-D polynomial D(z,w) will not have 
any roots outside the region T, if and only if D(z,zejr)
does not have any roots in the 1-D unit circle. This 
condition should be established for all values of r
between zero and 2π.

It is of great importance to realize that for every 
fixed r polynomial D(z,zejr) is a 1-D polynomial of z. 
On the other hand, to check the stability of a 2-D
system, 1-D methods can be used.

Controllability and observability: In the first place,
before description the controllability, observability and 
minimality of 2-D systems it should be noted that in the 
2-D systems the local state vector which is a part of the 
state vector is used. 

Definition 3 [16]: A 2-D system with GR form is local 
controllable, if and only if local state vector x(i,j) with 
zero initial conditions can be transferred to the
coordinate origin. Also, this system is local observable, 
if and only if the value of state vector in the coordinate 
origin can be determined from outputs y(i,j) uniquely.

Theorem 5 [16]: A  2-D system with GR form is local 
controllable, if and only if the following matrix is full 
row rank

1,0 0,1 1,1 i , j m,nB,A B,A B,A B,...,A B,...,A B  

m and n are respectively the order of local horizontal 
and vertical state vectors. Ai,j is the transfer matrix of 
GR model.

Also, this system is observable, if and only if the 
following matrix is full column rank.

1,0

0,1

1,1

i , j

m,n

C
CA
CA
CA

CA

CA

 
 
 
 
 
 
 
 
 
 
 
  





Generally, it can be shown that a 2-D system with 
controllability and observability conditions is not
minimal and the reverse of this issue is not true [28]. In 
[20], the controllability and observability conditions for 
WAM form of 2-D systems are presented.
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CONCLUSION

In this article, an overview of 2-D systems is 
presented. In this regard, the 2-D models given in 
literature are presented and 1-D form of 2-D models 
called WAM form is expressed. These models are used 
to consider the stability of 2-D systems. Finally, the 
specifications such as controllability, observability and 
minimality are given. It is obviously, crystal clear that 
2-D systems and their characteristics are different from 
1-D systems.
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