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Abstract: In this paper, Taylor series based on which is the differential transform method (DTM) is applied to
solve various forms of nonlinear Klein-Gordon type equations. The application of differential transform method
is extended to derive approximate analytical solutions of nonlinear Klein-Gordon type equations. The solutions
of our model equations are calculated in the form of convergent series with easily computable components.
Some examples are solved as illustrations, using symbolic computation. The results show that the approach
is easy to implement and accurate when applied to these type equations. The method introduces a promising
tool for solving many linear and nonlinear differential equations.
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INTRODUCTION Law Nonlinearity [1]. Some numerical methods for solving

It is well known that many phenomena in scientific Several techniques based on series expansion,
fields can be described by nonlinear partial differential Adomian decomposition method [6-8], Variational
equations. The nonlinear models of real-life problems are iteration method [9-11] and Homotopy perturbation
still difficult to solve either numerically or analytically. A method [12], Homotopy analysis method [13] and auxiliary
broad class of analytical solution methods and numerical equation method [14] has been used for the solution of
methods were used to handle these problems. For some these equations.
nonlinear problems, although exact analytical solutions In this paper, Taylor’s series based method so called
can be achieved, they often appear in terms of very the differential transform method (DTM) is applied to
complicated implicit functions and are not convenient for solve various forms of nonlinear Klein-Gordon type
application. equations. This method is different from the traditional

For example, the nonlinear Klein-Gordon equations high order Taylor’s series method which requires
arise  in  a  variety  of physical circumstances  and  the symbolic computation of the necessary derivatives of the
initial-value problem of the one-dimensional nonlinear data function. Traditional Taylor series method is
Klein-Gordon equation is given by the following form. computationally taken long time for large orders. With this

u  + u  + g(u) = f(x,t) (1) exact solutions for differential equations. The solutions ofu xx

Where: our model equations are calculated in the form of
u = u(x,t) stands for the wave displacement at position x convergent series with easily computable components by
and time t,  is a known constant and g(u) is a nonlinear using symbolic computation which is in suitable form for
force. For example, in well-known sine-Gordon equation, application.
the nonlinear force is given by g(u) = sin u. In different
physical applications, the nonlinear force g(u) has also Differential Transform Method: Differential transform
other forms, such as Klein-Gordon Equation with a Power method (DTM) first introduced by Zhou [15] and its main

Eq.(1) are given in [1-5] and the references therein.

method, it is possible to obtain highly accurate results or
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application therein was to solve both linear and nonlinear (5)
initial value problems arising in electrical circuit theory.
Differential transform method (DTM) is a semi-analytical
numerical technique that basically uses Taylor series for
the solution of differential equations in the form of a
polynomial with a distinct algorithm. Consequently, the
DTM is an alternative choice for getting Taylor series
solution of the given differential equations. There are also
other methods in the literature based on Taylor series
expansion such as Restricted Taylor series method [3] and
Adomian decomposition method [6-8]. But differential
transform method (DTM) formulizes the Taylor series in
a totally different way. With this method, the given
differential equation and related boundary conditions are
transformed into a recurrence relations which leads to the
solution of a system of algebraic equations as coefficients
of a power series solution and is easily carried out in
computer. Because of this property, the method is no
need of linearization of the nonlinear problems and as a
result avoids the large computational works and the
round-off errors. Differential Transform method has been
successfully applied to various problems [16-24] recently.
In this section we briefly describe differential transform
method as follow:

One-Dimensional Differential Transform
Definition: If u(t) is analytic in the domain T, then it will
be differentiated continuously with respect to time t,

(2)

for t = t, then (t,k) = (t ,k), where k belongs to the seti

of nonnegative integers, denoted as the K-domain.
Therefore, Eq. (2) can be rewritten as

(3)

Where:
U(k) is called the spectrum of u(t) at t = t .i

Definition 2.2. If u(t) can be expressed by Taylor’s series,
then u(t) can be represented as

(4)

Eq.(4) is called the inverse of u(t), with the symbol D
denoting the differential transformation process.
Combining (3) and (4), we obtain

Applying  the  differential transformation, a
differential equation in the domain of interest can be
transformed to algebraic equation in the K-domain and the
u(t) can be obtained by finite-term Taylor’s series plus the
remainder, as.

(6)

In order to speed up the convergent rate and the
accuracy of calculation, the entire domain of t needs to be
split into sub-domains [2].

Two-Dimensional   Differential   Transform:  Let w(x,y)
a   function    of    two  variables    such   that   w(x,y)  is
an analytic function in the domain K and let (x,y) = (x , y )0 0

in  this  domain.   The  function  w(x,y)  is  then
represented  by  a  power  series  whose   center  located
at   (x ,  y ).  The  differential  transform  of  function0 0

w(x,y) is.

(7)

Where:
w(x,y) is the original function and W(k,h) is the
transformed function. The differential inverse transform of
W(k,h) is defined as follows:

(8)

Combining Eqs.(7) and (8), it can be obtained that

(9)

From  the  above  definitions,  it  can  be  found  that
the concept of the two-dimensional differential transform
is derived from the two-dimensional Taylor series
expansion with Eqs. (7) and (8), the fundamental
mathematical operations performed by two-dimensional
differential transform can readily be obtained and are
listed in Table 1.

Applications: To illustrate the effectiveness of the present
method, several test examples are considered in this
section.
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Table 1: Operations for the two-dimensional differential transformation Original function Transformed function

Example 1. We first consider the sine-Gordon equation respectively. Substituting (13) and (14) into (12), we

u  - u  = sin u (10)u xx

subject to initial conditions

(11)

Taking in to consideration , then

the transformed version of Eq.(10) is

(12)

The transformed initial conditions are

(13)

and
U(k,1) = 0 (14)

obtained the closed form solution as

or

(15)

which is the solution of the problem.

Example 2: Consider the sine-Gordon equation

u  - u  + sin u = 0 (16)u xx

subject to initial conditions

u(x,0) = 0, u (x,0) = 4 sec h(x) (17)t
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Fig. 1: The approximate solution of sine-gordon equation
by using ADM and DTM

Table 2: Comparison of the present method with ADM [40] for various t

values

t DTM ADM

0.01 1.570842569 1.570846327

0.02 1.570981292 1.570996327

0.03 1.571212494 1.571246327

0.04 1.571536170 1.571596327

0.05 1.571952311 1.572046327

0.06 1.572460908 1.572596327

0.07 1.573061949 1.573246327

0.08 1.573755420 1.573996326

0.09 1.574541304 1.574846325

0.1 1.575419582 1.575796323

Taking into consideration , then the

transformed version of Eq.(16) is

(18)

The transformed initial conditions are

U(k, 0) = 0           k = 0,1,2,... (19)

U(k,1) = 4 sec h(x)          k = 0,1,2,... (20)

respectively. Substituting (19) and (20) into (18), we
obtain the closed form solution as

Fig. 2: Comparison between exact solution and differential
transform method for u(x,t).

Fig. 3: Comparison between exact solution and differential
transform method for x = 0,..1 and t = 0,..,1

or

(21)
hich gives the closed form solution by [9].
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Fig. 4: Solution of klein-Gordon equation for x = 0.3,...,1.6
and t = 0.2,..., 3.5.

v(x,t) = 4 arctan (t sec h(x)) (22)

Example 3: Consider the nonlinear non-homogeneous
Klein-Gordon equation

u  - u  = u  = x t (23)u xx
2 2 2

subject to initial conditions

u(x,0) = 0 , u (x,0) = x (24)t

The transformed version of Eq.(23) is

(25)

The transformed initial conditions are

U(k,0) = 0 (26)
and

(27)

respectively.
Substituting  (26)  and  (27)  in  (25),  we  obtained  the
solution as

u(x,t) = xt (28)

which is the exact solution of (23).

Table 3: Omparison of the differential transform method and exact solution
for values of (x,t)

(x,t) DTM Exact solution Absolute Error

(0,0) 0 0 0
(0.1,0,1) 0.3967025516 0.3967025318 0.198.10 7

(0.2,0.2) 0.7744407152 0.7744383605 0.2354710 7

(0.3,0.3) 1.117938909 1.117903310 0.000035599
(0.4,0.4) 1.417703903 1.417478390 0.000225513
(0.5,0.5) 1.670046492 1.669172441 0.000874051
(0.6,0.6) 1.875503673 1.873003332 0.002500341
(0.7,0.7) 2.034159224 2.027881163 0.006278061
(0.8,0.8) 2.119859965 2.101787350 0.018072615
(0.9,0.9) 1.935206961 1.863811562 0.071395399
(1,1) 0.4479024943 0.1202380952 0.3276643991

Table 4: Comparison between exact solution for x=0.01 and 5-iterative
MADM, 2-iterative VIM, 3-iterative HPM and 4-iterative DTM

t |Exact-MADM| |Exact-VIM| |Exact-HPM| |Exact-DTM|

0.01 1.32E-06 5.00E-07 6.00E-16 6.56E-25
0.02 1.05E-05 4.00E-06 8.11E-14 1.34E-21
0.03 3.49E-05 1.35E-05 1.38E-12 1.16E-19
0.04 8.19E-05 3.19E-05 1.04E-12 2.75E-18
0.05 1.58E-04 6.23E-05 4.92E-11 3.21E-17
0.06 2.71E-04 1.07E-04 1.76E-10 2.38E-16
0.07 4.25E-04 1.70E-04 5.16E-10 1.30E-15
0.08 6.28E-04 2.54E-04 1.31E-09 5.64E-15
0.09 8.84E-04 3.60E-04 2.97E-09 2.06E-14
0.1 1.20E-03 4.92E-04 6.18E-09 6.56E-14

Table 5: Comparison between exact solution for x=0.01 and 5-iterative
MADM, 2-iterative VIM, 3-iterative HPM and 4-iterative DTM.

t |Exact-MADM| |Exact-VIM| |Exact-HPM| |Exact-DTM|

0.01 1.93E-04 4.97E-07 5.00E-16 6.28E-25
0.02 3.93E-04 4.00E-06 7.33E-14 1.29E-21
0.03 6.08E-04 1.34E-05 1.25E-12 1.11E-19
0.04 8.45E-04 3.18E-05 9.36E-12 2.63E-18
0.05 1.11E-03 6.20E-05 4.45E-11 3.07E-17
0.06 1.41E-03 1.07E-04 1.59E-10 2.28E-16
0.07 1.76E-03 1.69E-04 4.66E-10 1.24E-15
0.08 2.15E-03 2.52E-04 1.18E-09 5.39E-15
0.09 2.59E-03 3.58E-04 2.68E-09 1.97E-14
0.1 3.09E-03 4.90E-04 5.58E-09 6.28E-14

CONCLUSION

In this work, differential transform method is extended
to solve the nonlinear Klein-Gordon equations. The
present study has confirmed that the differential transform
method offers significant advantages in terms of its
straightforward applicability, its computational
effectiveness and its accuracy.
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