Focal Curve of Timelike Biharmonic Curve in the Lorentzian Heisenberg Group Heis ${ }^{3}$

Talat Körpinar and Essin Turhan
Department of Mathematics, Fırat University, 23119, Elazığ, Turkey

Abstract

In this paper, we study focal curve of timelike biharmonic curve in the Heisenberg group Heis ${ }^{3}$. We characterize focal curve of timelike biharmonic curve in terms of curvature and torsion of biharmonic curve in the Heisenberg group Heis^{3} Finally, we construct parametric equations of focal curve of timelike biharmonic curve.

Mathematics Subject Classification (2000). 58E20
Key words: Heisenberg group - Biharmonic curve • Focal curve

INTRODUCTION

Darboux had found how to determine the evolutes of a curve, that is, the curves whose tangents are normals of γ. Moreover, he had shown that the focal surface of γ is foliated by the evolutes and all of them lie on the focal surface.

The differential geometry of space curves is a classical subject which usually relates geometrical intuition with analysis and topology. For any unit speed curve γ, the focal curve $C \gamma$ is defined as the centers of the osculating spheres of γ. Since the centerof any sphere tangent to at a point lies on the normal plane to γ at that point, the focal curve of γ may be parameterized using the Frenet frame $\left(\mathrm{t}(s), \mathrm{n}_{1}(s), \mathrm{n}_{2}(s)\right)$ of γ as follows:

$$
C_{\gamma}(s)=\left(\gamma+c_{1} \mathrm{n}_{1}+c_{2} \mathrm{n}_{2}\right)(s),
$$

Where the coefficients c_{1}, c_{2} are smooth functions that are called focal curvatures of γ.

The aim of this paper is to study focal curve of a timelike biharmonic curve in the Lorentzian Heisenberg group Heis ${ }^{3}$.

Harmonic maps $f:(M, g) \rightarrow(N, h)$ between Riemannian manifolds are the critical points of the energy

$$
\begin{equation*}
E(f)=\frac{1}{2} \int_{M}|d f|^{2} v_{g} \tag{1.1}
\end{equation*}
$$

and they are therefore the solutions of the corresponding Euler--Lagrange equation. This equation is given by the vanishing of the tension field

$$
\begin{equation*}
\tau(f)=\operatorname{trace} \nabla d f \tag{1.2}
\end{equation*}
$$

The bienergy of a map f by
$E_{2}(f)=\frac{1}{2} \int_{M}|\tau(f)|^{2} v_{g}$,
and say that is biharmonic if it is a critical point of the bienergy.

The first and the second variation formula for the bienergy, showing that the Euler-Lagrange equation associated to E_{2} is

$$
\begin{align*}
& \tau_{2}(f)=-\mathrm{J}^{f}(\tau(f))=-\Delta \tau(f)-\operatorname{trace} R^{N}(d f, \tau(f)) d f \\
& =0 \tag{1.4}
\end{align*}
$$

Where J^{f} is the Jacobi operator of f. The equation $\tau_{2}(f)=0$ is called the biharmonic equation. Since J^{f} is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, that is nonharmonic biharmonic maps.

In this paper, we study focal curve of timelike biharmonic curve in the Heisenberg group Heis ${ }^{3}$. We characterize focal curve of timelike biharmonic curve in terms of curvature and torsion of biharmonic curve in the Heisenberg group Heis ${ }^{3}$ Finally, we construct parametric equations of focal curve of timelike biharmonic curve.

The Lorentzian Heisenberg Group Heis ${ }^{3}$: The Lorentzian Heisenberg group Heis ${ }^{3}$ can be seen as the space R^{3} endowed with the following multiplication:

[^0]$(\bar{x}, \bar{y}, \bar{z})(x, y, z)=(\bar{x}+x, \bar{y}+y, \bar{z}+z-\bar{x} y+x \bar{y})$.
Heis 3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.
The Lorentz metric g is given by
$g=d x^{2}+d y^{2}+(x d y+d z)^{2}$.

The Lie algebra of Heis^{3} has an orthonormal basis
$\mathbf{e}_{1}=\frac{\partial}{\partial z}, \mathbf{e}_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, \mathbf{e}_{3}=\frac{\partial}{\partial x}$
for which we have the Lie products
$\left.\mathrm{e}_{2}, \mathrm{e}_{3}\right]=2 \mathrm{e}_{1},\left[\mathrm{e}_{3}, \mathrm{e}_{1}\right]=0,\left[\mathrm{e}_{2}, \mathrm{e}_{1}\right]=0$

With
$g\left(\mathrm{e}_{1}, \mathrm{e}_{1}\right)=g\left(\mathrm{e}_{2}, \mathrm{e}_{2}\right)=1, g\left(\mathrm{e}_{3}, \mathrm{e}_{3}\right)=-1$.

Proposition 2.1: For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above, the following is true:

$$
\nabla=\left(\begin{array}{ccc}
0 & \mathbf{e}_{3} & \mathbf{e}_{2} \tag{2.2}\\
\mathbf{e}_{3} & 0 & \mathbf{e}_{1} \\
\mathbf{e}_{2} & -\mathbf{e}_{1} & 0
\end{array}\right),
$$

Where the (i, j)-element in the table above equals $\nabla_{\text {ei }}$ e_{j} for our basis

$$
\left\{\mathrm{e}_{k}, k=1,2,3\right\}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\} .
$$

We adopt the following notation and sign convention for Riemannian curvature operator:
$R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{X, Y} Z$.

The Riemannian curvature tensor is given by
$R(X, Y, Z, W)=-g(R(X, Y) Z, W)$.

Moreover we put
$R_{a b c}=R\left(\mathbf{e}_{a}, \mathbf{e}_{b}\right) \mathbf{e}_{c}, R_{a b c d}=R\left(\mathbf{e}_{a}, \mathbf{e}_{b}, \mathbf{e}_{c}, \mathbf{e}_{d}\right)$,
Where the indices a, b, c and d take the values 1,2 and 3 .
$R_{232}=-3 R_{131}=-3 \mathrm{e}_{3}$,
$R_{133}=-R_{122}=\mathrm{e}_{1}$,
$R_{233}=-3 R_{121}=-3 \mathrm{e}_{2}$,
and
$R_{1212}=-1, R_{1313}=1, R_{2323}=-3$.

Timelike Biharmonic Curves in the Lorentzian Heisenberg Group Heis ${ }^{3}$: Let $\gamma: I \rightarrow$ Heis 3 be a timelike curve on the Lorentzian Heisenberg group Heis^{3} parametrized by arc length. Let $\left\{\mathrm{t}, \mathrm{n}_{1}, \mathrm{n}_{2}\right\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group Heis^{3} along γ defined as follows:
t is the unit vector field γ^{\prime} tangent to γ, n_{1} is the unit vector field in the direction of $\nabla_{\mathrm{t}} \mathrm{t}$ (normal to γ) and n_{2} is chosen so that $\left\{\mathrm{t}, \mathrm{n}_{1}, \mathrm{n}_{2}\right\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:
$\nabla_{\mathrm{t}} \mathrm{t}=\kappa \mathrm{n}_{\mathrm{l}}$,
$\nabla_{\mathrm{t}} \mathrm{n}_{1}=\kappa \mathrm{t}+\tau \mathrm{n}_{2}$,
$\nabla_{\mathrm{t}} \mathrm{n}_{2}=-\tau \mathrm{n}_{1}$,

Where κ is the curvature of γ and τ is its torsion.
With respect to the orthonormal basis $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$ we can write
$\mathbf{t}=t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+t_{3} \mathbf{e}_{3}$,
$\mathbf{n}_{1}=n_{1}^{1} \mathbf{e}_{1}+n_{1}^{2} \mathbf{e}_{2}+n_{1}^{3} \mathbf{e}_{3}$,
$\mathbf{n}_{2}=\mathbf{t} \times \mathbf{n}_{1}=n_{2}^{1} \mathbf{e}_{1}+n_{2}^{2} \mathbf{e}_{2}+n_{2}^{3} \mathbf{e}_{3}$.
Theorem 3.1: (see [18]) Let $\gamma: I \rightarrow$ Heis 3 be a nongeodesic timelike curve on the Lorentzian Heisenberg group Heis^{3} parametrized by arc length. γ is a timelike non-geodesic biharmonic curve if and only if
$\kappa=$ constant $\neq 0$,
$\kappa^{2}-\tau^{2}=-1+4\left(n_{2}\right)^{2}$
$\tau^{\prime}=-2 n_{1}{ }^{1} n_{2}{ }^{1}$.
Corollary 3.2: (see [18]) Let $\gamma: I \rightarrow$ Heis 3 be a nongeodesic timelike curve on the Lorentzian Heisenberg group Heis^{3} parametrized by arc length. γ is biharmonic if and only if
$\kappa=$ constant $\neq 0$,
$\tau=$ constant,
$n_{1}{ }^{1} n_{2}{ }^{1}=0$,
$\kappa^{2}-\tau^{2}=-1+4\left(n_{2}{ }^{1}\right)^{2}$.

Theorem 3.3.: (see [18]) Let $\gamma: I \rightarrow$ Heis 3 be a nongeodesic timelike curve on Lorentzian Heisenberg group Heis ${ }^{3}$ parametrized by arc length. If $n_{1}{ }^{1} \neq 0$, then γ is not biharmonic.

Theorem 3.4.: (see [18]) Let $\gamma: I \rightarrow$ Heis 3 be a nongeodesic timelike biharmonic curve on the Lorentzian Heisenberg group Heis ${ }^{3}$ parametrized by arc length. If $N_{1}=0$, then

$$
\begin{equation*}
\mathbf{t}(s)=\sinh \phi_{0} \mathbf{e}_{1}+\cosh \phi_{0} \sinh \psi(s) \mathbf{e}_{2}+\cosh \phi_{0} \cosh \psi(s) \mathbf{e}_{3} \tag{3.4}
\end{equation*}
$$

Where $\phi_{0} \in \mathrm{R}$.
Focal Curve of Timelike Biharmonic Curve in the Lorentzian Heisenberg Group Heis ${ }^{3}$: For a unit speed curve γ, the curve consisting of the centers of the osculating spheres of γ is called the parametrized focal curve of γ. The hyperplanes normal to γ at a point consist of the set of centers of all spheres tangent to γ at that point. Hence the center of the osculating spheres at that point lies in such a normal plane. Therefore, denoting the focal curve by C_{γ}, we can write
$C_{\gamma}(s)=\left(\gamma+c_{1} \mathrm{n}+c_{2} \mathrm{~b}\right)(s)$,
Where the coefficients c_{1}, c_{2} are smooth functions of the parameter of the curve γ, called the first and second focal curvatures of γ, respectively. Further, the focal curvatures c_{1}, c_{2} are defined by
$c_{1}=\frac{1}{\kappa}, c_{2}=\frac{c_{1}^{\prime}}{\tau}, \kappa \neq 0, \tau \neq 0$.

Lemma 4.1.: Let $\gamma: I \rightarrow$ Heis 3 be a unit speed timelike biharmonic curve and and C_{γ} its focal curve on Heis^{3}. Then,
$c_{1}=\frac{1}{\kappa}=\operatorname{constantand} c_{2}=0$.
Proof: Using (3.3) and (4.2), we get (4.3).
Lemma 4.2. Let $\gamma: I \rightarrow$ Heis 3 be a unit speed timelike biharmonic curve and C_{γ} its focal curve on Heis^{3}. Then,
$C_{\gamma}(s)=\left(\gamma+c_{1} \mathrm{n}\right)(s)$.
Theorem 4.3.: Let $\gamma: I \rightarrow$ Heis 3 be a unit speed timelike biharmonic curve and and C_{γ} its focal curve on Heis^{3}. Then, the parametric equations of C_{γ} are
$x_{C_{\gamma}}(s)=\frac{c_{1}}{\kappa}\left(\Re \cosh \phi_{0} \sinh \left[\Re_{S}+\varepsilon\right]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh \left[\Re_{S}+\varepsilon\right]\right)$
$+\frac{1}{\Re} \cosh \phi_{0} \sinh [\Re s+\varepsilon]+\varepsilon_{1}$,
$y_{C_{\gamma}}(s)=\frac{c_{1}}{\kappa}\left(\Re \cosh \phi_{0} \cosh [\Re s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]\right)$
$+\frac{1}{\mathfrak{R}} \cosh \phi_{0} \sinh [\mathfrak{R} s+\rho]+\varepsilon_{2}$,
$z_{C_{\gamma}}(s)=\frac{c_{1}}{\kappa}\left(\Re \cosh \phi_{0} \cosh [\Re s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\Re s+\varepsilon]\right)$
$\left(\frac{\kappa}{\mathfrak{R}} \cosh \phi_{0} \sinh [\mathfrak{R} s+\varepsilon]+\frac{2 \kappa}{\mathfrak{R}^{2}} \sinh \phi_{0} \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]+\varepsilon_{3} s+\varepsilon_{4}\right)$
$+\frac{1}{\mathfrak{R}} \cosh \phi_{0} \sinh [\mathfrak{R} s+\varepsilon]-\frac{1}{\mathfrak{R}} \cosh ^{2} \phi_{0}\left(-\frac{s}{2}+\frac{\sinh 2[\Re s+\varepsilon]}{4 \Re}\right)$
$-\frac{\varepsilon_{1}}{\mathfrak{R}} \cosh \phi_{0} \cosh [\Re s+\varepsilon]+\varepsilon_{5}$,
Where $\varepsilon, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}$, are constants of integration and $\mathfrak{R}=\left(\pm \frac{\kappa}{\cosh \phi_{0}}-2 \sinh \phi_{0}\right)$.

Proof: The covariant derivative of the vector field t is:
$\nabla_{\mathbf{t}} \mathbf{t}=t_{1}^{\prime} \mathbf{e}_{1}+\left(t_{2}^{\prime}+2 t_{1} t_{3}\right) \mathbf{e}_{2}+\left(T_{3}^{\prime}+2 t_{1} t_{2}\right) \mathbf{e}_{3}$.
From (3.4), we have
$\nabla_{\mathbf{t}} \mathbf{t}=\left(\psi^{\prime} \cosh \phi_{0} \cosh \psi(s)+2 \sinh \phi_{0} \cosh \phi_{0} \cosh \psi(s)\right) \mathbf{e}_{2}$
$+\left(\psi \cosh \phi \sinh \psi(s)+2 \sinh \phi_{0} \cosh \phi_{0} \cosh \psi(s)\right) \mathbf{e}_{3}$.
Since $\left|\nabla_{\mathrm{t}} \mathrm{t}\right|=\kappa$ we obtain
$\psi(s)=\left(\pm \frac{\kappa}{\cosh \phi_{0}}-2 \sinh \phi_{0}\right) s+\varepsilon$,
Where $\varepsilon \in \mathrm{R}$.

Thus (3.4) and (4.8), imply
$\mathbf{t}=\sinh \phi_{0} e_{1}+\cosh \phi_{0} \sinh [\Re s+\varepsilon] e_{2}+\cosh \phi_{0} \cosh [\Re s+\varepsilon] e_{3}$,

Where $\mathfrak{R}=\left(\pm \frac{\kappa}{\cosh \phi_{0}}-2 \sinh \phi_{0}\right)$.

Using (3.1) in (4.9), we obtain
$\mathbf{t}=\left(\cosh \phi_{0} \cosh [\mathfrak{R s}+\varepsilon], \cosh \phi_{0} \sinh [\Re s+\varepsilon], \cosh \phi_{0} \cosh [\Re s+\varepsilon]\right)$
$\left.-x(s) \cosh \phi_{0} \sinh [\Re s+\varepsilon]\right)$.

From (2.1), we get
$\mathbf{t}=\left(\cosh \phi_{0} \cosh [\mathfrak{R s}+\varepsilon], \cosh \phi_{0} \sinh [\Re s+\varepsilon], \cosh \phi_{0} \cosh [\mathfrak{R s}+\varepsilon]\right)$
$\left.-\left(\frac{1}{\mathfrak{R}} \cosh \phi_{0} \sinh [\Re s+\varepsilon]+\varepsilon_{1}\right) \cosh \phi_{0} \sinh [\mathfrak{R} s+\varepsilon]\right)$,
Where ε_{1} is constant of integration.

From (3.1) and (4.9), we get
$\nabla_{\mathbf{t}} \mathbf{t}=\left(\Re \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\Re s+\varepsilon]\right) \mathbf{e}_{2}$
$+\left(\Re \cosh \phi_{0} \sinh [\mathfrak{R} s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]\right) \mathbf{e}_{3}$.
Where $\mathfrak{R}=\left(\pm \frac{\kappa}{\cosh \phi_{0}}-2 \sinh \phi_{0}\right)$.
By the use of Frenet formulas, we get

$$
\begin{align*}
& \mathbf{n}_{1}=\frac{1}{\kappa} \nabla_{\mathbf{t}} \mathbf{t} \\
& =\frac{1}{\kappa}\left[\left(\Re \cosh \phi_{0} \cosh [\Re s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\Re s+\varepsilon]\right) \mathbf{e}_{2}\right. \\
& \left.+\left(\Re \cosh \phi_{0} \sinh [\Re s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\Re s+\varepsilon]\right) \mathbf{e}_{3}\right] . \tag{4.11}
\end{align*}
$$

Substituting (2.1) in (4.11), we have
$\mathbf{n}_{1}=\frac{1}{\kappa}\left(\left(\Re \cosh \phi_{0} \sinh [\mathfrak{R} s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]\right)\right.$,
$\left(\Re \cosh \phi_{0} \cosh [\Re s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\Re s+\varepsilon]\right)$,
$\left(\mathfrak{R} \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]+2 \sinh \phi_{0} \cosh \phi_{0} \cosh [\mathfrak{R} s+\varepsilon]\right)$
.$\left(\frac{\kappa}{\mathfrak{R}} \cosh \phi_{0} \sinh [\mathfrak{R} s+\varepsilon]+\frac{2 \kappa}{\mathfrak{R}^{2}} \sinh \phi_{0} \cosh \phi_{0}\right.$
$\left.\left.\cosh [\mathfrak{R} s+\varepsilon]+\varepsilon_{3} s+\varepsilon_{4}\right)\right)$,
Where $\varepsilon_{3}, \varepsilon_{4}$ are constants of integration.
Next, we substitute (4.10) and (4.12) into (4.4), we get (4.5). The proof is completed.

Using Mathematica in Theorem 4.3, yields

Fig. 1:

REFERENCES

1. Blair, D.E., 1976. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, SpringerVerlag 509, Berlin-New York.
2. Caddeo, R. and S. Montaldo, 2001. Biharmonic submanifolds of S^{3}, Internat. J. Math., 12(8): 867-876.
3. Caddeo, R., S. Montaldo and C. Oniciuc, 0000. Biharmonic submanifolds of S^{n}, Israel J. Math., to Appear.
4. Carmo, M.P., 1976. Differential Geometry of Curves and Surfaces, Pearson Education.
5. Darboux, G., 1914. Leçons sur la theorie des surfaces, Vol. 1, Chap. 1, $2^{\text {nd }}$ revised and enlarged Edition, Gauthier-Villars, Paris.
6. Dimitric, I., 1992. Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20: 53-65.
7. Eells, J. and L. Lemaire, 1978. A report on harmonic maps, Bull. London Math. Soc., 10: 1-68.
8. Eells, J. and J.H. Sampson, 1964. Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86: 109-160.
9. Hasanis, T. and T. Vlachos, 1995. Hypersurfaces in E^{4} with Harmonic Mean Curvature Vector Field, Math. Nachr., 172: 145-169.
10. Jiang G.Y., 1986. 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A., 7(2): 130-144.
11. Jiang, G.Y., 1986. 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A., 7(4): 389-402.
12. Kuhnel, W., 1999. Differential geometry, Curves-surfaces-manifolds, Braunschweig, Wiesbaden.
13. Loubeau, E. and C. Oniciuc, 2007. On the biharmonic and harmonic indices of the Hopf map, Transactions of the American Mathematical Society, 359(11): 5239-5256.
14. Matsuda, H. and S. Yorozu, 2003. Notes on Bertrand curves, Yokohama Math. J., 50(1-2): 41-58.
15. Struik, D.J., 1961. Differential geometry, Second ed., Addison-Wesley, Reading, Massachusetts.
16. Turhan, E., 2008. Completeness of Lorentz Metric on 3-Dimensional Heisenberg Group, International Mathematical Forum, 13(3): 639-644.
17. Turhan, E. and T. Körpınar, 2009. Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica, 42(2): 423-428.
18. Turhan, E. and T. Körpınar, 0000 . On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$ Zeitschrift für Naturforschung A- A Journal of Physical Sciences.

[^0]: Corresponding Author: Talat Körpinar, Department of Mathematics, Fırat University, 23119, Elazığ, Turkey. E-mail: essin.turhan@gmail.com.

