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Abstract: Impulsive differential equation 1s emerging as an important area of investigation since such equations
appear to represent a natural framework for mathematical modeling of real processes and phenomena studied
in physics, chemical technology, population dynamics, biotechnelogy and economics. There has been a
significant development in impulse theory especially on the qualitative behavior of solutions of the impulsive
differential equations with fixed moments. However, many impulsive differential equations cannot be solved
analytically or their solving is complicated. In this paper, the algorithm which follows the theory of impulsive
differential equations to solve the impulsive differential equations by using the second-order Taylor series
methods 1s presented. Finally, the better convergence result of the numerical solution 1s given by solving the

numerical examples.
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INTRODUCTION
Impulsive differential equations, by means,
differential  equations mvolving 1mpulse effects,

are seen as a natural description of observed evolution
phenomenon of several real world problems. For example,
mechanical system with impact, biological phenomenon
mvolving thresholds, bursting rhythm models in medicine
and biology, optimal control models in economics,
pharmacokinetics and industrial robotics and a host of
others, do exhibit impulsive effects. Furthermore, impulses
do contribute to the stabilization of some delay differential
systems [1]. Therefore, it is beneficial to study the theory
of impulsive differential equations as a well deserved
discipline, due to the increase applications of impulsive
differential equations in various fields in the future. The
ploneer papers m this theory are written by Mil'man and
Myshkis in 1960's [2].
In spite of its 1importance, many solutions
regarded to impulsive differential equations are done
analytically.  Some of the famous researchers who

presented significance results are TLakshmikantham,

Bainov, Simeonov and many others [3-10]. However,
differential

solved analytically or if done, their solving is very

many impulsive equations cannot be
much complicated [11]. Therefore, munerical solutions of
mpulsive differential equations has to be studied and
the results has to be mmproved. In this paper, the
numerical solutions of impulsive differential equations are
sought by wusing the Second-order Taylor Series
method. The algorithm proposed is interpreted according
to the theory of impulsive differential equations written by
Lakshmikantham et al [9]. The solutions are then
compared to the previous article written by the

researchers using the FEuler method [12].

Preliminaries: Basically, impulsive differential equations
consist of three components.

A continuous-time differential equation, which
governs the state of the system between impulses, an
impulse equation, which models an impulsive jump,
defined by a jump function at the instant an impulse
oceurs and a jump criterion, which defines a set of jump
events. Mathematically, the equation takes the form,
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x'(2)= f.x),
Ax(ty) = L (x5 ),

t#t, teZ

k=12 . m (2.1)

where Z 13 any real mterval, f ;- ZxR*-R" 13 a given
function, I R™-R "k = 1, 2 m and
Ax([k): x(lk+)*x(tk_), k=12, m. The numbers t, are

called instants (or moments) of impulse, I, represents

aeees

the jump of state at each f, whereas x5 and
x(tk—)represent the mght lmit and the left lunit,

respectively, of the state at £ = £, The moments of impulse
maybe fixed or depended on the state of the system. In
this paper, we will be concemed with fixed moments only.

The equations of systems with impulse at fixed
moments have the following form

X=flx),  tEy,

Ax=1,(x), 1=t (2.2)
where §, < £ < ... t, < by <., keZandfor t=1,
Ax(t) = 28" «x(t) where x(1k+): lim x(z, + #) -

h—>0"

We surely see that any solution, x(#) of (2.2) satisfies

(1) Xy =flt.x@), telt.tg) and
(ii) Mx(ty) =L (x(f). t=f, k=12 .

Let the sets M{f) = M, N(#) = N and the operator
A(#) = A be independent of t and let A:M-N be defined
by Ax = x + I(x), where I: Q-£). Whenever, any solution
x() = x(t, 0, x,) hits the set M at some time ¢, the operator
A instantly transfers the point x(f) = M into the
point ¥() + Kx(£) e N.

Generally, the solutions of the impulsive differential
equations are plecewise continuous functions with poimnts
of discontinuity at the moments of the impulse effect.

In thus paper, we denote S = {1, ;- ke Z}c R where
<ty forallkeZ t, - +cewhenk - +ccand k- +
when £, - -« If Q< R isany real interval, we suppose
that x(#) = [x,{(D x(D...x,(O]", is a vector of unknown
functions and

f:OQxR* 5 R,

Al 5(), x,(1).
Jalt, x4 (2), 2y (2), .y
fl,x=]..

x, (1)
%, (7)

1s continuous function on every set [, 4., xR

Definition 1: A system of differential equation in the
form of

dx 2.3
E:f(t’x)’ =t (23)

with conditions

Axlpy, = x(t, )= Xty )= T (x(1,)

where J; R"-R" are continuous operators, k=0, 1, £ 2,...,
15 called impulsive differential equation (IDE) at fixed
impulse. A state of the process,

X, = x(t)

1s taken as the start condition to solve (2.3).

The problem of existence and uniqueness of the
solutions of impulsive differential equations 1s similar to
that of corresponding ordinary differential equations. The
continuability of solutions is affected by the nature of the
impulsive action.

Definition 2: A solution of the IDE (2.3) means a
piecewise continuous x : JJ - R with piecewise continuous
first derivative such that

1. ()
e Sz, x(1)),

2. - w1y )= I (xitg)), k=0,£1,+2, ..

1#7T,

Let x(f) be the sclution of IDE (2.3) with mitial
condition x(7), then x(¢) can be represented as

t
X+ ! Fis, x{s)) ds + t;ﬁ L), 1eQ

t

st [ floxsnds = 3 Lialy)) L reqr

t ty <t <t

x(t)=

where (0" and Q" are the maximal intervals on which the
solution can be continued to the right or to the left of the
point ¢ = ¢, respectively.

We also need the
impulsive differential inequalities result. For this purpose,

following known [9]

we let PC denote the class of piecewise contimuous
functions from R. to R. with discontinuous of the first
kind only att=1#; k= 1,2., We can now state the
needed results.
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Theorem 2.1: Assumes that

(A4y) the sequence {f}satisfies O < #; < # <f, < .. <. with
t,~ oo ask - oo

(4) m € PC'[R,, R] and m (£) is left continuous at 4, k=
1.2,

(Ayvk=12_ and = ¢

D () = gt m(1)),

mity) <y (1)),
mty) < wy

t=1,,
¢ (2.4)

where g Rf _, pls continuous in (%, 4] * R, and for
eachw € R,

lim  g(t,z)=g(t,
(t,z)%(t;,w)

w) exists and ¥, - R, - R is
non-decreasing;

(A 7)) = ¢, £, wy) 1s the maximal solution of

w' = glt,w), t=1,
W) = (2, ), @
wity)=wg =0
existing on [#;, «]. Then
m(Ey < r(t), t>1, (2.6)

We recall that the maximal solution #(#)of (3.2) means
the following

#y(2.1g. W),

N
Althn ), telnt]

te [fo,ﬁ]

N
r =t (20)) 1e(t ]

(2.7)

where each rttr (£ 1s the maximal solution of (2.3)
on the interval (£, t.,] for each7=1,2,...

PRI ELACI (RSP (30))))

., and

Numerical Examples: Suppose the TDE (2.3) with the start
condition x, = x(#,) and the impulsive operators L, (k € 7)
are giver. The impulsive operators act at the moments of
Jump happen, £, for all & € Z which are described by the
quadrate matrices of dimensions nxz The numerical
algorithm in [12] is considered.

Example 1 Consider the TDE given in [13] :

dx
—=flt,x), t=t
o fltx) 3
Ae(t) =T (), t=t, k=12,.. (3.1)
x, = x{1y)
and ¢, = 0.0,
(1) -1
X = N Xg =
X5(1) 0
o 0.1666666x + 0.1666666x, + 0.1666666
t,x)=
S 1666666.x —0.1666666x, + 0.5833333

The wnpulsive operators act at f; = 1.0 and £, = 2.0 are
given as follows:

025 025 3.0 40
[1 = s [2 =
0.0 -1.0 0.0 -1.0

Here,we wish to approximate the value of £, =2.3.
We apply the algorithm by using the Second-order
Taylor Series method,

(3.2)

2

X=X +h.xi'+§xi " (3.3)

where 7 € Z 1s the index of iteration and 4 1s the step size
of each iteration. Here, the step size A = 0.1. Then we
compare the results obtained by using the analytical
expression that 1s the solution of IDE (3.1).

The numerical values of solution are obtained by
using the Matlab programming and the results of the
Second-order Taylor Series method as well as the
analytical expression are graphed m Figure 1 and 2.

Example 2: Consider the IDE,

dx

— =S,

= £ 1
dt

Ax(ty) =T (x(t)), t=t, k=1,2,.. (3.4)

X, = x(ty)
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Fig. 1: The approximate values of x, between the Taylor and analytical method for Example 1
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Fig. 2: The approximate values of x, versus time, ¢ between the Taylor and analytical method for Example 1
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Fig. 3: The approximate values of x; versus time, ¢ between the Taylor and analytical method for Example 2
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Fig. 4: The approximate values of x; versus time, ¢ between the Taylor and analytical method for Example 2

Table 1: The comparison of errors of Example 1 between numerical
methods at t =2.3

Euler x,(#)
0.1032

1 Taylor x,(t)
2.3 0.0657

Euler x, (1)
0.0781

Tay lor x,(t)
0.0739

Table 2: The comparison of errors of Example 2 between numerical
methods att=1.0

i Taylor x,(1) Euler x,(#) Tay lor x,(t) Euler x4(#)
1.0 0.3991 0.4761 0.3122 0.3187
and £, = 0.0,

x,(2) 2
X = 5 Xg =

X, (1) -2

P 2.?(72
o2
—x
3.6565

At k-1, g _{1.0000

", = . Here, we wish to
0.0000

—0.8020
determine the approximate value at ¢, = 1.0.

For that purpose we apply the Second-order Taylor
series method (3.3). Then we compare the results obtained
by using the analytical expression that is the solution of
IDE (3.4). The solutions are graphed in Figure 3 and 4.

CONCLUDING REMARKS

The accuracy of the results can be improved by
mvestigating the solutions of the other numerical
methods. Tn this paper, a general numerical procedure for
treating the impulsive differential equations at fixed
moments is proposed. The numerical algorithm is

developed accordingly to the theory of immpulsive
differential equations for the second-order Taylor series
method. Despite of its importance in the applications of
real life problems, solving the impulsive differential
equations numerically has not been done by many
researchers. Therefore, many studies have to be done in
order to enhance and verify the existing results. Tn this
paper, we have shown that the second-order Taylor series
method has improved the accuracy of the solutions.
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