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Abstract: In this paper, the unsteady motion of a spherical particle rollmg down an inclined plane i a
Newtonian fluid for a range of Reynolds numbers was solved using a simulation method called the Differential
Transformation Method (DTM). The concept of differential transformation is briefly introduced and then we
employed it to derive solution of nonlinear equation. The obtained results for displacement, velocity and

acceleration of the motion from DTM are compared with those from the exact and numerical solution to verify
the accuracy of the proposed method. The results reveal that the Differential Transformation Method can

achieve suitable results in predicting the solution of such problems.
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INTRODUCTION

The description of the motion of immersed bodies in
fluids is present in several manufacturing processes, e.g.
sediment transport and deposition n pipe lines, alluvial
chamnels, chemical engineering and powder process [1-6].
Several works could be found in technical literature which
investigated the spherical particles in low and high
concentration [7-9].

A particle falling or rolling down a plane m a fluid
under the influence of gravity will accelerate until the
gravitational force is balanced by the resistance forces
that include buoyancy and drag. The constant velocity
reached at that stage 1s called the “terminal velocity™ or
“settling velocity”. Knowledge of the terminal velocity of
solids falling in liquids is required in many industrial
applications. Typical examples include hydraulic transport
slurry systems for coal and ore transportatior, thickeners,
mineral processing, solid-liquid mixing, fluidization
equipment, drilling for oil and gas, geothermal drilling.

The resistive drag force depends upon drag
coefficient. Drag coefficient and terminal velocities of
particles are most important design parameters in
engineering applications. There have been several
attempts to relate the drag coefficient to the Reynolds
number. The most comprehensive equation set for
predicting C from Re for Newtonian fluids has been

published by Clft ef al. [10], Khan and Richardson [11],
Chhabra [12] and Hartman and Yutes [13]. Comparing
between most of these relationships
demonstrates quite low deviations [13].

for spheres,
Most of mentioned applications ivolve the
description of the particle position, velocity and
acceleration during time e.g. classification, centrifugal and
gravity collection or separation, where it is often
necessary to determime the trajectories of particle
accelerating in a fluid for proposes of design or improved
operation [14)].

For some industrial problems such flow in the rolling
ball viscometer which entails the measurement of the
rolling velocity of a tightly fitting sphere mn an mnclined
tube, transport of solid particles in inclined pipe lines
or sedimentation of solid particles in inclined open
chammels we need information about the motion of
particles rolling down an inclined plane. This topic 1s
received less attention in the technical literature. Jan
and Chen [15] developed a C, — Re correlation for a
single spherical particle rolling down a smooth plane in
an mcompressible Newtoman media for range of
0.1 < Re < 10°. In their work, inclination angle was varied
between 2° < & < 10° They used this correlation and
theirr own experimental works to numerically solve the
equation of motion for a sphere rolling down a smooth
inclined plane.
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Jan and Chen presented their correlations for three regimes:

Cp =322/Re if Re

c ]0[3A02—1,89IogRe+0,4lI(IogRe)z’U'm(logRe)}]
Y/D =

Where Reynolds number is defined as follow:

Re =240 @
u
In Eq. (2), p, u, D and u denote the fluid density,
particle velocity, particle diameter and fluid viscosity,
respectively.
Chhabra and Ferreira [16] used Eq. (1) to generate one
correlation for range of 0.1 < Re < 10° in following
structure:

C[)=a+% 3)

Where « and [ are constants. They recommended a
relationship with 11% average relative deviation:

321.906 @

Cr=0.861+
b Re

Figure (1) demonstrates the variations of C,, versus
Re for Egs. (4) with experimental points from Jan and Chen
[15], in a log-log diagram.

Eq. (3) is of the same form as that used by Rumpf[17],
Ferreira [18] and Oseen[19] for free fall of spherical
particles such:

Cp=05+22 ®)
Re

Which was presented by Ferreira [18] for
vertically falling sphere. Comparing Eqs. (4) and (5), it
could be found that the drag coefficient for a sphere
rolling down a smooth plane is much larger than that for
vertically free fall.

In this case study, similarity transformation has been
used to reduce the governing differential equations into
an ordinary non-linear differential equation. In most cases,
these problems do not admit analytical solution, so these
equations should be solved using special techniques.

The differential transform method is based on Taylor
expansion. It constructs an analytical solution in the form
of a polynomial. It is different from the traditional high
order Taylor series method, which requires symbolic
computation of the necessary derivatives of the data
functions.

<10

if10 < Re < 20000

Cp=0.74 if Re > 20000

M

1.060 . q

# Experimental Data, Lapple and Shepherd[20]
= Eq(2)
—Eq.(3)
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R R ]
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Fig. 1: Drag curve for a sphere rolling down a smooth
plane

The Taylor series method is computationally taken
long time for large orders. The differential transform is an
iterative procedure for obtaining analytic Taylor series
solutions of differential equations. Differential transform
has the inherent ability to deal with nonlinear problems
and consequently Chiou [19] applied the Taylor transform
to solve non-linear vibration problems. Furthermore, the
method may be employed for the solution of both
ordinary and partial differential equations. Jang et al. [20]
applied the two- dimensional differential transform method
to the solution of partial differential equations. Finally,
Hassan [21] adopted the Differential Transformation
Method to solve some problems. The method was
successfully applied to various practical problems [22-24].

The aim of current study is the analytically
investigation of acceleration motion of a spherical particle
rolling down an inclined boundary with drag coefficient in
form of Eq. (3), using the Differential Transformation
Method (DTM). Investigation and solution of falling
objects’ equation is a new application for DTM which was
used for some other engineering problems.

Problem Definition: Consider a small, spherical, non-

deformable particle of diameter D, mass m and density p,
rolling down a smooth plane in an infinite extent of an
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Incompressible Newtonian Media

Fig. 2: Schematic picture of a spherical particle rolling down a smooth plane in a Newtonian media

incompressible Newtonian fluid of density p and viscosity
u. Let u represent the velocity of the particle at any
instant time, ¢ and g the acceleration due to gravity.
Figure 2 demonstrates a schematic figure of current
problem.

Neglecting lift force and sphere tube friction, the
equation of motion is gained as follow [16]:

w(l)

m4+224 mg(1-L)sin(9)
Py P

S

1 2 dw(t)
—gﬂD PCp( t) ©6)

Where C), represents the drag coefficient. In the right
hand side of the Eq. (6), the first term represents the
buoyancy affect and the second one corresponds to
resistance, drag, force.

The main difficulty in solution of Eq. (6) lies in the
non-linear terms which are generated due to non-linearity
nature of the drag coefficient, C,. Substituting Eq. (3) in
Eq. (6) and by rearranging parameters, Eq. (6) could be
rewritten as follow:

5 2
ad wz(t)_’_de(l)_‘_c(dW(t)J w(0)=0, M:O,
dt dt at dt
@)
Where:
a=m[1.4+2ij ®)
Py
b=£7rDu ©)
8
c =gnsz (10)
8
d= mg[]—ijsin(e) (11

With change of variation as bellow we obtain velocity,

) (12)
u= dt

By substituting Eq. (11) into Eq. (6) we will have:

+bhuty+e(u@)’ —d=0, woy=0  (13)

u du(t)
dt

Egs. (7) and (13) are non-linear ordinary differential
equations which could be solved by numerical techniques
such Runge-Kutta method. We employed DTM and
compared our results with numerical solution of 4th order
Runge-Kutta method using the Maple package.

Differential Transformation Method: We suppose x (1)
to be analytic function in a domain D and t = 7, represent
any point in D. The function x(7) is then represented by
one power series whose center is located at 7,. The Taylor
series expansion function of x(7) is in the form of [23]:

k
x(T) = Z(T {" x(”} vieD  (14)

The particular case of Eq. (13) when 1, is referred to as
the Maclaurin series of x(7) and is expressed as:

k
x(t) = Z k'[dd);(kr)] VreD (15)
7=0

As explained in [25-31] the differential transformation
of the function x(7) is defined as follows:

dkx(r)
X (k)= z k{ — }
=0

Where, x(7) is the original function and X(k) is the
transformed function. The differential spectrum of X(k) is
confined within the interval 7 € [0,H], where H is a
constant. The differential inverse transform of X(k) iS
defined as follows:

(16)
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o0 k
x(7) = (ij X0k
:c; H (17)

It 18 clear that the concept of differential
transformation is based upon the Taylor series expansion.
The values of function X(%) at values of argument & are
referred to as discrete, i.e. X(0) 1s known as the zero
discrete, X(1) as the first discrete, etc. The more discrete
available, the more precise it is possible to restore the
unknown function. The function x(7) consists of the
T-function X(k) and its value is given by the sum of the
T-function with (%{)k as its coefficient. In real

applications, at the right choice of constant H, the larger
values of argument k the discrete of spectrum reduce
rapidly. The function x(7) 1s expressed by a fimte series
and Eq. (16) can be written as:

n i
X(T)= [iJ X0
;;0 H (18)

Eq. (18) implies that the value k=r+ 1 - = i3 negligible.

If 2(#) and v(f) are two uncorrelated functions with
time ¢ where U(k) and (k) are the transformed functions
corresponding to #(#) and v(f) then we can easily proof
the fundamental mathematics operations executed by
differential transformation. The fundamental mathematical
operations performed by differential transformation
method are listed in Table 1 [25-30].

Table 1: The fundamental operations of differential transformation method

Transformed function

X0 = oc(E) + fe(k)

Original function

3(0) = oflx) + Cetd)

()= % XU = (k+ DF(k+1)
w4 i0) X0b = (k + Dk + DFCk+2)
dr?
k
() =ADelt) ()= Z FOGH-1)
=0

1 k=m
0 k#m

x@=r X(k):6(k—m):{

Application of Differential Transformation Method: Now
we apply Differential Transformation Method mto
Eq. (7) for find w(f) as displacement. Taking the
differential transform of Eq (16) with respect to ¢
according Table 1 gives:

al (ke + 20k +10Wy o )+ b (e + 1) Wiy )

it

By suppose ¥, and | are apparent from boundary
conditions by solving Eq. (19) respect I#¥,,,, we will have:

&
+ {Z(k—ﬁ DWiejn(J + UWjH}
(19)

k=0 o
otherwise |

1 (b W+ chz - d) (20)
Wy=—n L
2 a
w, = 117a(b+20M)) (21)
3 a
y (367, + 6w + 4cW22) 22)
W, =
12 a
W, 1 (W, + 2eW I +3cW Y, ) (23)
5 a

The above process is continuous. Substituting
Eq. (20-23) into the main equation based on DTM,
Eq. (18), it can be obtammed the closed form of the
solutions,

2 (beﬁ+cPV12 7d)
wit)=Wy+thHj—-——-
2 a
2 (W (b+ 2em))
e

A (3bW3 L6, + 4cW22)

12 a

15 (bW, + 2607, + 3T ) 24
_r .

5 a

Substituting Eq. (20-23) mto the main equation based
on DTM, it can be obtamed the closed form of the
solutions. In this stage for achieve higher accuracy we
use sub-domain technique, i.e. the domain of ¢ should be
divided into some adequate intervals and the values at the
end of each interval will be the initial values of next cne.
For example for first sub-domain assume that distance of
each interval is 0.005. For first interval, 0 - 0.005 boundary
conditions are From boundary conditions m Eq. (7) at
pomt £ = 0. By exerting transformation, we will have:
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W,=0 (25)
The other boundary conditions are considered as follow:
W, =0 (26)

As mentioned above for next mterval, 0.005-001, new
boundary conditions are:

W,=w 2"
The next boundary condition is considered as follow:

Wy = %(0.2) (28)

For tlus interval function w(f) 1s represented by
power series whose center 1s located at 0.005, by means
that in this power series ¢ convert to (¢ — 0.005).

As we can see bellow in similar case for achieves the
solution for u(#) as velocity we should apply DTM on
Eq. (13) to find transformed function.

k 1 k=0
a({(k+ 1)Uy ) +8Uy +c ZUk—J'UJ' -d 0 otherwise -0

/=0
(29)

By assuming that U, 1s apparent from boundary
condition by solving Eq. (29) respect U,,,, we will have:

BUy+cliy  —d
U, - _( 0 0 ) [(€]8)]
o
_ 1{Uh(6+2eUy ) (31)
AR b Ll et D)
2 a
2
(60 1 20507 +cU1) (32)
Up=-—
3 a
1 (bU; + 2cU3U¢ + 20U, (33)
Uy =——
4 a
Lo (BT4+ 26U,Uy + 26U3U; + cUZZ) 34)
5T ¢
5 a

As mentioned above this process is continuous.
By substituting Eq. (30-34) into Eq. (18), closed form of
the solutions 1s,

(bU0+CU02—d)
u(i):Uofii
a

12 (U (B 2eUp))
2 a
3 (.!;U2 + 2eUsUG + ch)

3 a
1 (BU3 + 2eUsly + 2¢U5LT )
12 a

5 (bU4 +2cU U + 2¢U30; + cUzz)

3 ” @)

And for achieve higher accuracy we use sub-domain
technique as described above.

By substituting Eqs. (8-11) mto Eq. (24) and Eq. (35),
an exact solution for w(r) and u(f) can be obtained which
1s only related to the particle and the fluid properties.

Runge-Kutta Method: The Runge-Kutta methods are an
important iterative method for the approximation solutions
of ordinary differential equations. These methods were
developed by the German mathematician Runge and
Kutta around 1900. For simplicity, we explain one of the
important methods of Runge-Kutta methods, named
forth-order Runge-Kutta method.

Consider an imtial value problem be specified as follows:

V=1ty).  yity)=yo (36)

Then RK4 methed 1s given for this problem as below:
yn+1:yn+%h(kl+2k2+ 2k3+ ky). (37

t

i)

+1 = tf’.l + h (38)

Where y,., is the RK4 approximation of y(z,,,) and

k= ft,.5,), (39)

ky = f[zn LA 1hkl} (40)
2 2

ks —f(rn LA lhl@}, (41)
2 2

ky = f(1,+ by, + hiz). (42)

Real Combination of Sphere-Fluid: Mentioned method
was applied for real combination of solid-fluid. A smgle
Alummum  spherical particle of 3 mm diameter was
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Table 1: Physical properties of materials

Material Density [kg/m’] Viscosity [Kg/m.s]
Olive oil 913.0 0.0840
75% Glycerin 11782 0.0182
Water 998.0 0.0010
Aluminum 2702.0 -
Table 2: Selected coefficient of Eq. (6)
Solid Fluid a b c d/sin (0)
Aluminum  Olive oil 0.00007929254195 0.03185587204 0.002778281994 0.0002321749754
75% Glycerin 0.00008679089531 0.006902105608 0.003585292272 0.0001977575336
Water 0.00008169586033 0.0003792365719 0.003036939135 0.0002211437441
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Fig. 3: Displacement variation for different fluid, (6 = 2°) Fig. 4: Displacement variation for different fluid, (6 = 6°)
D808
assumed to roll down a smooth inclined plane in an S
infinity medium of olive oil, 75% glycerin solution and il — S
water. Required physical properties of selected materials o — DRaks .
are given in Table 1. [31, 32].
Inserting above properties into Eqgs. (8) to (11) and 0,805 1 -
using Eq. (4), different combinations are gained which are - |
. . 08804 ¢
classified in Table 2. " s
By substituting above coefficients in Eq. (7) and for 18034 .
. . . . . . ¢
four different inclination angles, twelve different nonlinear
equations are achieved. Inclination angles were selected
to be 2°, 6°, 20° and 60°. Differential Transformation
Method was applied to gained equations and results were
compared with numerical method. Figures 3 to 6 depict the

variation of rolling displacement of the particle versus
time for different inclination angles and fluids. These
figures clearly illustrate that how inclination angle affects
the displacement of particles while other conditions are
equivalent. Variable displacement and velocity for sphere
which its fluid is water, results of the present analysis for
6= 60° are tabulated and comprised with the numerical

Fig. 5: Displacement variation for different fluid, (6 =20°)

solution obtained by fourth-order Runge—Kutta method
in Table 3 and 4 In this case, a very interesting agreement
between the results is observed which confirms the
excellent validity of the DTM.
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Table 3: The w() obtained from DTM and NS for water (8= 60°)

Time (s) NS (m) DTM (m) Absolute Error (m)
0.01 0.0001152513 0.0001152596 0.0000000083
0.03 0.0009955233 0.0009955240 0.0000000007
0.05 0.0026320686 0.0026320732 0.0000000046
0.07 0.0048805356 0.0048805405 0.0000000049
0.09 0.0076020439 0.0076020476 0.0000000037
0.11 0.0106764688 0.0106764741 0.0000000053
0.13 0.0140072644 0.0140072704 0.0000000060
0.15 0.0175207012 0.0175207065 0.0000000053

Table 4: The u(f) obtained from DTM and NS for water (6 = 60°)

Time (s) NS (m/s) DTM (m/s) Absolute Error (m/s)
0.01 0.0228428071 0.0228426387 0.0000001684
0.03 0.0640969838 0.0640970297 0.0000000459
0.05 0.0983357245 0.0983357493 0.0000000249
0.07 0.1253427527 0.1253427351 0.0000000176
0.09 0.1458033787 0.1458033546 0.0000000241
0.11 0.1608357457 0.1608357047 0.0000000410
0.13 0.1716326481 0.1716325880 0.0000000601
0.15 0.1792619071 0.1792618477 0.0000000594
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The variation of rolling velocity of the particle
versus time for different inclination angles and fluids
are shown in Figs. (7-10). Presented results demonstrate
an excellent agreement between DTM and numerical
solution. For a given inclination angle, by increasing
the fluid viscosity, terminal velocity and acceleration
duration are decreased. Results show that increasing
of inclination angle increases the terminal velocity
as well as acceleration duration and displacement.
Also by augmentation of viscosity, the dependence of
terminal time on inclination angle is decreased.
Employing DTM, the acceleration of the particles,
Acc, was achieved and presented in Figures 11 to 14
for different fluids. Outcomes illustrated that higher
acceleration is obtained for larger inclination angle.
Acceleration of particles tends to zero after a while
due to constant value of terminal velocity. To show
the effect of inclination angle the displacement of
particle rolling down in water was obtained for
instant time during rolling procedure. Variable
displacement and velocity for sphere which its fluid is
water, results of the present analysis from Eq. (4) are
tabulated and comprised with the numerical solution
obtained by fourth-order Runge-Kutta method in Table 3
and 4. In this case, a very interesting agreement between
the results is observed which confirms the excellent
validity of the DTM.

CONCLUSIONS
In this paper, Differential Transformation Method

(DTM) is applied to obtain the solution of rolling particle
nonlinear equation with drag coefficient in form of Eq. (4).
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Equation was solved generally and for some real
combinations of solid-liquid. Instantaneous velocity,
acceleration and position were obtained as results and
outcomes were compared with Runge—Kutta method
solution. Very good agreement has been seen between
numerical and current analytical method. Results show
that for a given condition of particle and fluid, an increase
in inclination angle, B, results in an increase in terminal
distance and a decrease n terminal duration. Current work
approved the simplicity and capability of Differential
Transformation Method. Solution of equation of motion
for an object rolling down an inclined boundary is a new
application of DTM and could be used in wide area of
scientific hydraulic  and

problems,  especially

sedimentation engineering.

Nomenclature

abcd Constants Re Reynolds number

W Displacement [m] o0 constants

u Velocity » Dynamic viscosity [kg/ms]
t Time [s] o Fluid density [kg/m®]

Cp Drag coefficient o, particle density [kg/m®]

D Particle diameter [m] m  Particle mass [kg]

g Acceleration due to gravity [m/is®]
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