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A Modified Series Solution of a Class of Nonlinear Helmholtz Type Equations
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Abstract: In this paper, the Adomian decomposition method 1s modified for solving some classes of mitial
and/or boundary value problems of wave, heat and Poisson equations. To modify Adomian series solution,

some weighted algorithms are established which used all of conditions of proposed problems simultaneously
and effectively. Some examples are considered and the validity of the proposed algorithms are confirmed by

the numerical results.
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INTRODUCTION

Helmholtz-type equations arise naturally in many
physical applications related to wave propagation,
vibration phenomena and heat transfer. These equations
are often used to describe the vibration of a structure, the
acoustic cavity problem, the radiation wave, the scattering
of a wave, acoustic scattering in fluid-solid problems and
the heat conduction in fins [1-14].

In this study, we consider a class of Helmholtz type
PDE's having nonlinear term as

gy by + (1 glu))u = flx,y), @
(2 y) € [0,1]x[0.1],

With the following conditions

w(x,0) = p(x), 0<x<], (2)
u(l.t)= py(x), O<x<l, 3)
w0, y)=q(y), 0<y<l, (4)
u(l,y)=gy(y), O<y<l &)
0=<u(x,y)=C, (6)

Where ¢ is a known smooth function, P, P, ¢, ¢, re
known L, functions and C 1a a constant. Existence and
unigueness of solution of Helmholtz type equations and
some computational approaches for solving theses kind
of problems are discussed in literature [9-14]. Nonlinear
partial differential equations are encountered m such
various fields as physics, mathematics and engineering.
Most nonlinear models of real life problems are still very

difficult to solve either numerically or theoretically. There
has recently been much attention devoted to the search
for better and more efficient methods for determining a
solution, approximate or exact, analytical or numerical, to
the nonlnear models.

The objective of this work 15 to establish an
algorithm based on Adomian decomposition method
(ADM) for solving the problem (1)-(6). The ADM has
been proved to be effective and reliable for handling
differential equations, linear or nonlinear. Unlike the
traditional methods, The ADM needs no discritization,
linearization, spatial transformation or perturbation. The
ADM provide an analytical solution in the form of an
infinite convergent power series. A large amount of
research works has been devoted to the application of the
ADM to a wide class of linear and nonlinear, ordinary or
partial differential equations [15-20]. However, when mmtial
and/or boundary conditions have to be imposed, there are
still difficulties that cannot be encountered.

Analysis of the Method: Formally in the ADM, we first
consider equation (1) in operator form

Lo () + Ly, () + N () = F(x, ), )

Where Mu) = (1+¢(uyu and L and L, are linear
differential operators which defined as

8* _ & (8)
a2 Lyy=—5

Lxx -
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Applying the mverse operator
- L PN lex' ~, on both sides of
o= J'O J'D ()" dx —xJ'OJ'O ()" dx
equation (7) yields

u(x,3) = (1- X (M) + xq,(3)+ L (flmy) 9
- Lyy (H) - N(H))

In the ADM, the solution u(x,y) is given by the series
w(x, 1) = D iy (x, ), (10)
n=0
and the nonlinear term M) are decomposed as
N@w) = YB,. a1
n=0

Where B, is the so-called Adomian polynomials
which may be found as [15-17]

1L
nl gt

i

[V (Zlkﬁk Mamo> 720 10y
=0

Substituting (10} and (11) mto (9) gives

e (13)
i, = (1= () +xq, (1)+
n=0
L;;[f(xiy) - Lyy(zﬁn) - Zsz ]
n=0 n=0

The individual terms are obtained using the following
recursive scheme [15, 16]

g = (- X))+ xg2 () + L (flxyy 1D

Gy =L[-L,,Gi,)~B,] n=0. (15)

On the other hand, one may use L, and its inverse to
solve the problem (1)-(6). By using the inverse operator

_ ey . 1oy .+ . and applying it
L= [ [T Odyay [ [ Oayray, TIPS

on both sides of equation (7), we have

u(x.3) = (1= )p(x)+ ypy () + L) (Fix ) (10)
—L ()= N (u).
Using ADM, the solution #(x, {) can be derived as
u(x,y) = D i, (% y), a7
n=0

Where

i = (1- ) py () + ypy () + Ly (fxyy, (8

and

ﬂn+l :L})li (7Lxx (ﬂn)iBn): 1> 0. (1 9)

In (19), B, is the Adomian polynomial for the
function M) which obtained with respect to #,, n=0.

The decomposition series (10) and (17) are generally
convergent very rapidly in real physical problems. The
convergence analysis of the ADM, applied to various
nonlinear equations has been conducted by several
authors [18-20]. In this paper, we suppose that g(#) i1s an
analytic function and decomposition series (10) and (17)
are convergent.

The boundary value problem (1)-(6) require to solve
using all of boundary conditions. But there 13 no
guarantee that the decomposition series (10) would
satisfy  the (4) and/or (5) and the
decomposition series (17) would satisty the conditions (2)
and/or (3).

conditions

A Weighted Decomposition Method: Adomian initially
established that
operator

in PDE problems involving linear
terms with respect to x; y; z and t, four
equations are solved and then a linear combmation
of these solutions is necessary [15-17]. In this
section, the partial series solution of the problem (1)-(6)
15 derived by a dynamic weighted algorithm based on
ADM which 1s a linear combination of partial series
solutions with respect to x and y. The weight coefficients
in this linear combination are determined by using all
of boundary conditions simultanecusly and effectively.
We consider that the partial series solution of the problem

(D-(6) 1

¥n(X, 1) = Oy (x. ) + (1= 6, (x. y),  (20)

Where {8,},., can be considered any convergent
sequence in [0,1] and
il (21)
0, (5.0 = D iy (x.3),
F=0
n-1
Pulx) = D i (x,3). (22)
=0

Following theorem shows that the optimum values of
the weight coefficients &, for each >0 may be determined
with respect to the boundary conditions.
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Theorem: Suppose that for x,ye(0,1): p,(x), p.x) ¢, (v) and
g: () are L, functions and,

=116, (x.0)= p(x)|.
=119, (1)~ 22 ()l
=16, (0.»)—q(») I,
lzn =11.(0.5) - p2(¥) .
Where ||-|| denotes the I.,-norm. Then the optimum values
of 0, n(20)1s
Mty o P

Ay + Ay + X+ X3
Proof: Consider the residual functional J, as follows
Jo =] w0 -a )] >+ wal)-a ()]
+) v, @0 - @] 2+ w,xD-pm@| 2
Using (20) yields
T, =] 8.8,00.5)+(1- 6,)0,0.3) - g (»] *
] 88,00+ (1-8,)0,(L3) - g ()] °
+] 8,0,(x.00+(1-8,)9,(x.0)- @) *
| B8, (x 1)+ (1-8,)0, (x1) - pa(®)] *

According to the definitions of ¢,(x,1) and @,(x,7) we see
that

9,0, )= 2,(0,3) = (),
9, (L y) =, (1,30 = q,(¥),
P, (x,0) =1, (x,0) = p(x),
¢, (. )=u,(x1)= p, (x).

Therefore,
T =64 6,050y~ a )| * +| g xD-p ] D
+1-8% 00 -aW)| >+ ey -a]| D
=05 Gty + 22+ (1-0,0° O + %)

Tt 18 natural to choose the value of 8, such that this
residual is mimimized. Since .J, is a quadratic function of
8., we can find the minimum by Differentiating J, with
respect to 0, and setting the result to zero. This yields

2 2
8, = > ;{;”Jr;{lz” 5 =0
A’anr;{’anrlanrZZn

2

and this complete the proof of theorem.

Numerical Experiments: In order to present the
performance of the numerical method proposed, we
illustrate the numerical results obtained using the
weighted algorithm introduced in section 3 for solving the
two test problems.

Example 1: Consider following nonlinear helmholtz type
problem

g by, + (1= Qu+ 20" =0, (x,)[0,1]x[0,1],

X

1

#(x,0)= —— =, 0<x <],
chos(gx)JJ
1
u(l,x)= J_ , 0<<x <],
NG 005(72(,\: S+ 3
1
H(O,y):f, O<y<1,
chos(%y)+3
1
”(Ly): -‘/_ N 0<y<1.
\/gcos(%(erl))JrB

The exact solution of this problem can be derived as

1

u(x, )= .
NS cos(%(x +pN+3 (24)

Table 1 shows the decomposition solution using
P, (x,y), exact solution #(x,y) and the absclute errors
between them at some points.

Example 2: Consider following nonlinear boundary value
problem

g, iy, +(1- 207 =0, (x,)€[0,1]x[0.1],

X

1

u(x,0)= T 0=<x<1,
cos—x
2
1
w(lx)=———, 0<x<l,
cosa(x+a/§)
1
w0, y)=——=—, 0<y<l,
3
cos——
5 Y
1
w(l,y) = —————— 0<y<L
cosa(l+xﬁy)

The exact solution of this problem is
1 (25)

u(x, )= B R —
COS(E(x +33)
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Table 1: The comparison between exact and modified decomposition

solutions
X ¥ Exact '8 Absolute errors
0.2 0.3 0.176882 0.176892 4.87892E-6
0.6 0.185604 0.185607 8.52835E-6
09 0.199398 0.199405 9.08611E-6
0.4 0.3 0.182184 0.182191 4.49177E-6
0.6 0.194164 0.194165 9.56(M8E-6
09 0.212079 0.212087 3.01354E-6
0.6 0.3 0.189583 0.189585 4.35648E-6
0.6 0.205346 0.205354 8.77005E-6
0.9 0.228253 0.228257 5.56102E-6

Table 2: The comparison between exact and modified decomposition

solutions
X ¥ Exact '8 Absolute errors
0.2 0.3 1.05077 1.05078 817711E-6
0.6 1.15514 1.15515 6.58399E-6
0.9 1.34972 1.34973 7.77667E-6
04 03 1.09138 1.09139 4A07HE-6
0.6 1.23245 1.23247 3.85619E-6
0.9 1.49222 149224 3.43126E-6
0.6 0.3 1.14718 1.14719 3.74306E-6
0.6 1.33514 1.33515 2.69698E-6
0.9 1.68721 1.68723 3.22077E-6

In Table 2, we show the comparison of the
decomposition solution using ¥, (x,y) and the exact
solution #(x,y) at some points.

CONCLUSION

In this study a modification of Adomian
decomposition method (ADM) 15 developed to solve a
class of nonlinear Helmholtz type equations with Dirichlet
boundary conditions. For this end a weighted algorithm
based on ADM is established with respect to the
boundary conditions. In spite of classical decomposition
methods, the proposed method applies all boundary
conditions simultaneously and effectively to represent the
solution. This method may be use to solve Neumann and

mixed boundary value problems.
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