α-Nonexpansive Mappings on CAT(0) Spaces

Mehdi Asadi, S. Mansour Vaezpour and Hossein Soleimani

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract: In this paper the α -nonexpansive map is introduced and some properties of their fixed points are verified.

AMS Subject Classification: 05C05; 54H25

Key words: CAT (0) spaces · Hyperbolic spaces · Fixed Points

INTRODUCTION

Let (X,d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0,\ell] \subseteq R$ to X such that $c(0) = x, c(\ell) = y$ and $d(c(t), c(t_0)) = |t - t_0|$ for all $t, t_0 \in [0,\ell]$. In particular, c is an isometry and $d(x,y) = \ell$. The image α of c is called a geodesic (or metric) segment joining x and y When it is unique, this geodesic is denoted by [x,y]. The space (X,d) is said to be a geodesic space if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x,y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\Delta(x_1,x_2,x_3)$ in a geodesic metric space (X,d) consists of three points in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ). A comparison triangle for a geodesic triangle $\Delta(x_1,x_2,x_3)$ in (X,d) is a triangle $\overline{\Delta}(x_1,x_2,x_3):=\overline{\Delta}(\overline{x_1},\overline{x_2},\overline{x_3})$ in the Euclidean plane E^2 such that $d_{E^2}(\overline{x_1},\overline{y_1})=d(x_1,y_1)$ for $i,j\in\{1,2,3\}$.

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom:

"Let Δ be a geodesic triangle in X and let $\overline{\Delta}$ be a comparison triangle for Δ . Then Δ is said to satisfy the CAT(0) inequality if for all $x,y \in \Delta$ and all comparison points $x,y \in \overline{\Delta}$,

$$d(x,y) \le d_{E^2}(x,y).$$
"

In the following we recall some useful lemmas and theorem. For more details refer [1-6].

Lemma 1.1: ([7, Lemma 2.5]) Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2,$$

for all x, y, z, ϵ X and t ϵ [0,1].

In particular by Lemma 1.1 we have

$$d(\frac{1}{2}x \oplus \frac{1}{2}y,z)^2 \le \frac{1}{2}d(x,z)^2 + \frac{1}{2}d(y,z)^2 - \frac{1}{4}d(x,y)^2,$$

for all $x, y, z \in X$, which is called (CN) inequality of Bruhat-Tits, as it was shown in [8]. In fact (cf. [9], pp. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

In the sequel, we let $n \in N$, $z_1 = x$ and $z_n = y$ until Definition 1.4.

Lemma 1.2: ([10]) Let (X,d) be a CAT(0) space. Then

- 1. Let $x, y \in X$, $x \neq y$ and $z_i, z'_i \in [x,y]$ such that $d(x,z_i) = d(x,z'_i)$ for all $1 \leq i \leq n$. Then $z_i = z'_i$ for $1 \leq i \leq n$.
- 2. Let $x,y \in X$, then for each $\alpha = (\alpha_1,...,\alpha_n) \in [0,1]^n$ with $\sum_{i=1}^n \alpha_i = 1 \text{ there exist unique points } z_1,..., z_n \in [x,y] \text{ and unique point } z \in [x,y] \text{ such that } d(z,z_i) = \alpha_i \ell \text{ for } 1 \le i \le n.$

Notation: By the point z_{α} , we mean the unique point

$$z_{\alpha} = \alpha_1 z_1 \oplus ... \oplus \alpha_n z_n$$

Where $\alpha = (\alpha_1, ..., \alpha_n) \in [0,1]^n$ such that $\sum_{i=1}^n \alpha_i = 1$ and $z_i \in X$

for $1 \le i \le n$. Also z_{α} , can be written as

$$z_n = (1-\alpha_n)z' \oplus \alpha_n z_n$$

Theorem 1.3: ([10]) Let (X,d) be a CAT(0) space, let $x,y \in X$, such that $x \neq y$. Then

1.
$$[x,y] = \{z_{\alpha} \mid \alpha \in [0,1]^n, \sum_{i=1}^n \alpha_i = 1\}.$$

2. For all $z \in X$ the following holds:

$$(\exists z_1, \dots, z_n \in [x, y] \text{ such that } \sum_{i=1}^n d(z, z_i) = d(x, y)) \text{ if and only if}$$

 $z \in [x,y]$.

3. The mapping $f:[0,1]^n \to [x,y], f(\alpha) = z_{\alpha}$ is continuous and bijective

4.
$$d(z_{\alpha}, z) \le \sum_{i=1}^{n} \alpha_{i} d(z_{i}, z) \le \max\{d(z_{i}, z) : 1 \le i \le n\},$$

5.
$$d(z_{\alpha}, z)^2 \le \sum_{i=1}^n \alpha_i d(z_i, z)^2 \le \max\{d(z_i, z)^2 : 1 \le i \le n\},$$

6.
$$d(z_{\alpha}, z'_{\beta}) \leq \sum_{i=1}^{n} \alpha_{i} \beta_{j} d(z_{i}, z'_{j}) \leq \max\{d(z_{i}, z'_{j}) : 1 \leq i, j \leq n\},$$

for
$$\alpha = (\alpha_1, ..., \alpha_n), \beta = (\beta_1, ..., \beta_n) \in [0, 1]^n$$
 with $\sum_{i=1}^n \alpha_i = \sum_{i=1}^n \beta_i = 1$

and $z, z_i, z'_i \in X$ for $1 \le i \le n$ which

$$z_{\alpha} = \alpha_1 z_1 \oplus \cdots \oplus \alpha_n z_n, \quad z'_{\beta} = \beta_1 z'_1 \oplus \cdots \oplus \beta_n z'_n.$$

In the sequel we used this notation $T_{\alpha} = -\alpha_1 T_1$ $\oplus ... \oplus \alpha_n T_n$ where $T_1,...,T_n$ are maps on X, Such that $T_i u \in [x,y]$ for all $u \in X$, $1 \le i \le n$ and $\alpha = (\alpha_1,...,\alpha_n) \in [0,1]^n$ a multiindex satisfying

 $\sum_{i=1}^{n} \alpha_i = 1.$

Definition 1.4: ([11]) Let $\alpha = (\alpha_1,...,\alpha_n) \in [0,1]^n$ be a multiindex satisfying $\sum_{i=1}^n \alpha_i = 1$ The maps $T_1,...,T_n$ on X are

said to be α-nonexpansive if

$$\sum_{i=1}^{n} \alpha_i d(T_i x, T_i y) \le d(x, y), \tag{1.1}$$

for all $x, y \in X$.

For a simple case of the definition 1.4 we can consider the following definition for a map.

Definition 1.5: Let $\alpha = (\alpha_1,...,\alpha_n) \in [0,1]^n$ be a multiindex satisfying $\sum_{i=1}^n \alpha_i = 1$ A mapping $T:X \to X$ is said to be α -

nonexpansive if

$$\sum_{i=1}^{n} \alpha_i d(T^i x, T^i y) \le d(x, y)$$

for all $x, y \in X$.

Remark 1.6: The following observations are immediate.

1. The condition (1.1) implies that $T_1,...,T_n$ are α -nonexpansive and the mapping T_α is nonexpansive when $T_1,...,T_n$ are nonexpansive in the hyperbolic spaces (X,d) because by the Theorem 1.3 we have $d(T_\alpha x,T_\alpha y) = d(\alpha_1 T_1 x \oplus \cdots \oplus \alpha_n T_n x,\alpha_1 T_1 y \oplus \cdots \oplus \alpha_n T_n y)$

$$\leq \sum_{i=1}^{n} \alpha_i d(T_i x, T_i y) \leq d(x, y),$$

for every $x, y \in X$. However, the condition (1.1) is stronger.

- 2. From α -nonexpansiveness of T_{α} we have $\alpha_i, d(T_i x, T_i y) \le d(x, y)$ for all $1 \le i \le n$ so, if α_j for some $1 \le j \le n$ then T_j is nonexpansive, in which case $T_{\alpha} = T_j$ and if $\alpha_j \ne 0$ for $1 \le i \le n$ then T_i is Lipschitz thus, it is uniformly continuous.
- 3. All nonexpansive mappings satisfy (1.1).

Example 1.7: Let $X = \ell^1$ with $d(x,y) = ||x-y||_{\ell}^1$ and B be its unit ball. Define the mapping $T: B \rightarrow B$ by

$$Tx = T(x_1, x_2, x_3, \dots) = (x_2^2, ax_3, x_4, \dots)$$

where $a = \frac{\sqrt{17} - 1}{4}$. T is α -nonexpansive with $\alpha = (\alpha_1, \alpha_2) = \left(\frac{1}{2}, \frac{1}{2}\right)$. The Lipschitz constant k(T) is 2 and $k(T)^2 = 2\alpha^2 > 1$. For further iterations,

$$T^n x = (a^2 x_{n+1}^2, a x_{n+2}, x_{n+3}, \cdots), n \ge 3.$$

All have Lipschitz constant the same $T^{\ell}, k(T^{n}) = k(T^{\ell}) > 1$. For more details refer [11].

MAIN RESULTS

Lemma 2.1: Let (X,d) be a complete CAT(0) space. If T,S be two self map on X with $F(T) \cap F(S) \neq \phi$ and $U = (1-t)T \oplus tS$ a self map on X for every $t \in [0,1]$. Then

- (I) There exists a continuous map T' on X such that $F(T') = F(T) \cap F(S)$
- (ii) $d(T'x,Ux) \le (1-t)d(T'x,Tx) + td(T'x,Sx)$, for every $x \in X$
- (iii) $d(Ux,Uy) \le (1-t)d(Tx,Ty) + td(Sx,Sy)$, for every $x,y \in X$ and $F(T') \subseteq F(U)$.
- (iv) Further, if T and S be nonexpansive self maps on X, then *U* is nonexpansive too and $F(U) \subseteq F(T')$

Proof: (i), (ii) and (iii) can be easily proved, so we prove (iv). Let $x \in F(U)$ and $y \in F(T')$ so

$$d^2(x,y) = d^2(Ux,y)$$

$$\leq (1-t)d^2(Tx,y)+td^2(Sx,y)-t(1-t)d^2(Tx,Sx)$$

$$= (1-t)d^{2}(Tx,Ty)+td^{2}(Sx,Sy)-t(1-t)d^{2}(Tx,Sx)$$

$$\leq d^2(x,y) - t(1-t)d^2(Tx, Sx),$$

therefore Sx = Tx = Ux = x namely $x \in F(T) \cap F(S) = F(T')$, which it completes (iv).□

Theorem 2.2: Let (X d), be a complete CAT(0) space. If $T_{\alpha} = \alpha_1 T_1 \oplus ... \oplus \alpha_n T_n$ where $T_1,...,T_n$ are selfmaps on X for $1 \le i \le n$, then

- There exists a continuous map T' on X such that $F(T') = \bigcap_{i=1}^{n} F(T_i).$ 2. $F(T') \subseteq F(T_{\alpha})$ and $d(T'x, T_{\alpha}x) \le \sum_{i=1}^{n} \alpha_i d(T'x, T_ix)$, for every $x \in X$.
- 3. If T_i be nonexpansive selfmaps on X for $1 \le i \le n$, then T_{α} is nonexpansive too and $F(T_{\alpha}) \subseteq F(T')$.

Proof: Let x = T'x so $x = T_ix$ for $1 \le i \le n$, therefore,

$$T_{\alpha}x = \alpha_1 T_1 x \oplus \cdots \oplus \alpha_n T_n x = \alpha_1 x \oplus \cdots \oplus \alpha_n x = x,$$

because $d(x, \alpha_1 x \oplus ... \oplus \alpha_n x) = 0$, thus $x = T_n x$. This completes (2). To prove (3) we have

$$d(T_{\alpha}x,T_{\alpha}y) \leq \sum_{i=1}^{n} \alpha_{i} d(T_{i}x,T_{i}y) \leq \sum_{i=1}^{n} \alpha_{i} d(x,y) \leq d(x,y),$$

So T_{α} is nonexpansive.

We shall show that $F(T_n) \subseteq F(T')$ holds for $n \ge 2$. It is true for n = 2. Now

Consider $T_{\alpha} = (1 - \alpha_n)U \oplus \alpha_n T_n$ where

$$U = \frac{\alpha_1}{1 - \alpha_n} T_1 \oplus \cdots \oplus \frac{\alpha_{n-1}}{1 - \alpha_n} T_{n-1}.$$

Let $y \in F(T')$ and $x \in F(T_n)$. Since $y \in F(T') \subseteq F(U)$ and $y \in F(T') \subseteq F(T_i)$

$$for \ 1 \leq i \leq n, \ thus \ y = T'y = T_i y \ so \ \ \textit{Uy} = \frac{\alpha_1}{1 - \alpha_n} \ \textit{y} \oplus \cdots \oplus \frac{\alpha_{n-1}}{1 - \alpha_n} \ \textit{y}.$$

Since $d(y,Uy) = \frac{\alpha_1}{1-\alpha} d(y,y) = 0$ hence $y \in F(U)$ Now by

induction $F(U) \subseteq F(T')$. Now since U is nonexpansive and

$$d^2(x,y) = d^2(T_\alpha x, y),$$

$$\leq (1-\alpha_n)d^2(Ux,y)+\alpha_nd^2(T_nx,y)-\alpha_n(1-a_n)d^2(Ux,T_nx),$$

$$= (1 - \alpha_n)d^2(Ux, Uy) + \alpha_n d^2(T_n x, T_n y) - \alpha_n (1 - \alpha_n)d^2(Ux, T_n x),$$

$$\leq d^2(x, y) - \alpha_n (1 - \alpha_n)d^2(Ux, T_n x),$$

So
$$Ux = T_n x$$
, $T_{\alpha} x = x$ and

$$x = T_{\alpha}x = (1 - a_n)Ux \oplus a_nT_nx = (1 - a_n)Ux \oplus a_nUx = Ux$$

then $Ux = x = T_nx$ and so $x \in F(U)$

Since
$$x \in F(T_i)$$
 for $1 \le I \le n-1$ so $x \in \bigcap_{i=1}^n F(T_i) = F(T')$

thus T' x = x.

Lemma 2.3: Let (X,d) be a CAT(0) space, $F_{\alpha} = F(T_{\alpha})$ and $\mathfrak{I} = \{F(T) \mid T: X \to X, F(t) \neq \emptyset, F(T) closed\} \cup \{\phi, X\},\$ then

- a) If $F_{\alpha} \in \mathfrak{I}$ for every $\alpha \in I$, then $\bigcap_{\alpha} F_{\alpha} \in \mathfrak{I}$ b) If $F_i \in \mathfrak{I}$ for $1 \le i \le n$, then $\bigcup_{i=1}^n F_i \in \mathfrak{I}$.

Proof: If
$$\bigcap_{\alpha} F_{\alpha} = \emptyset$$
 then $\bigcap_{\alpha} F_{\alpha} \in \mathfrak{T}$ Otherwise $\bigcap_{\alpha} F_{\alpha}$ is

nonempty and closed.

So by [1, Theorem 2.1] there exists continuous map T: X→ X such that $F(T) = \overline{\bigcap_{\alpha} F_{\alpha}} = \bigcap_{\alpha} F_{\alpha}$ so $\bigcap_{\alpha} F_{\alpha} \in \mathfrak{I}$ This

completes (a).□

Lemma 2.4: With assumptions of Lemma 2.3, if $\tau = \{F \mid F^{\mathcal{C}} \in \mathfrak{I}\}$, Then τ is a topology on X

Proof: By Lemma 2.3, τ is a topology on X \square .

REFERENCES

1. Chaoha, P. and A. Phon-on, 2006. A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 320: 983-987.

- Leustean, L., 2007. A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl., 325: 386399.
- 3. Nanjaras, B. and В. Panyanaka W. Phuengrattana, 2010. Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Analysis: Hybrid Systems, 4: 25-31.
- Razani, A. and H. Salahifard, 2010, Invariant approximation for CAT(0) spaces, Nonlinear Methods and Applications, Analysis: Theory, 72: 2421-2425.
- Saejung, S., 2010. Halpern's Iteration in CAT(0) Spaces, Fixed point theory and applications, Article ID 471781, pp. 13.
- Suzuki, T., 2008. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340: 1088-1095.
- Dhompongsa, S. and B. Panyanak, 2008. On Δconvergence theorems in CAT(0) spaces, Comp. and Math. with Appl., 56: 2572-2579.
- Bruhat, F. and J. Tits, 1972. Groupes reductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math., pp. 415-251.
- Bridson, M. and A. Haeiger, 1999. Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg
- 10. Asadi, M., S.M. Vaezpour and H. Soleimani, 0000. Some Results on Fixed Points and Approximation for a New Class of Mappings in CAT(0) Spaces, Submitted.
- 11. Goebel, K. and W.A. Kirk, 2008. Some problems in metric fixed point theory, J. Fixed Point Theory and Applications, 4: 13-25.