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INTRODUCTION

Let (X.d) be a metric space. A geodesic path joiung
x € Xtoy € X (or, more briefly, a geodesic from x to y) 1s
a map c from a closed mterval [0, #] ¢ R to X such that
c(0) = x,¢() = yand d(c(t),clty)) = [t — ;| for all t,t, € [0,2].
In particular, ¢ 18 an isometry and d(x,y) = £. The image «
of ¢ is called a geodesic (or metric) segment joining x and
y When it is unique, this geodesic is denoted by [x,y]. The
space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic and X is said to be
uniquely geodesic if there is exactly one geodesic joining
x and y for each x,y € X. A subset Y < X is said to be
convex 1f Y mcludes every geodesic segment joining any
two of its points.

A geodesic triangle A(x,,%,,%;) in a geodesic metric
space (X,d) consists of three pomts in X (the vertices
of A) and a geodesic segment between each pair of
vertices (the edges of A). A comparison triangle for a
geodesic triangle A(x;x,x;) in (X,d) is a triangle
Alxpxax3)=A(x;x3.x3) in the Euclidean plane E* such
that dga (xi.yj)=dixpy;j) fori, je {1,2,3}.

A geodesic metric space 1s said to be a CAT(0) space
if all geodesic triangles of appropriate size satisfy the
following comparison axiom:

"Let A be a geodesic triangle in X and let A be a
comparison triangle for A. Then A 1s said to satisfy the
CAT(0) equality if for all x,y € A and all comparison
points =,y 4,

dixy) <dgz(xy)."

In the following we recall some useful lemmas and
theorem. For more details refer [1-6].

Lemma 1.1: ([7, Lemma 2.5]) Let (X, d) be a CAT(0) space.
Then

d(1—Hx D 1y, 2)% < (1—Hd(x,2)* + 1d(3,2)* — 11 - Hd(x, )%,
forallx, y,z, e Xand t€ [0,1].

In particular by Lemma 1.1 we have
1 1 s 1 , 1 , 1 5
di—x D —y, 2y < —d{xz)"+—d(y,2)" — —d(x,v)",
(2 7Y ) 5 (x,2) 5 (3.2) 1 (x,3)

forall x, v, z€ X, which 1s called (CN) inequality of Bruhat-
Tits, as it was shown in [8]. In fact (cf. [9], pp: 163), a
geodesic space is a CAT(0) space if and only if it satisfies
the (CN) inequality.

In the sequel, we letn € N, z, = x and z, = y until
Definition 1.4.

Lemma 1.2: ([10]) Let (X.d) be a CAT(0) space. Then

1. Letx, yelX, x# yandz, 2, € [xy] such that d(x,z,) =
dix, 2 foralll <i<n Thenz =2 forl <i< n

2. Letxy e X, then for each & = (,,....cx,) € [0,1]" with

H
Z% _1 there exist unique points z,..., z, € [x,v] and
=1
umque point z € [x,v] such that d (z,z,) = o, £ for
l<izn
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Notation: By the point z,, we mean the unique point

Z, =z, ®..® 0,7,

Pl
Where o = (e,,...,0,) € [0.1]" such that Zai .y and € X
i=1

for 1 <1 < n. Also z,, can be written as
Zy = (lian)z’ Dy Zys

Where i 7 B @ Lol ,

n-1-
1-o, 1-o,

Theorem 1.3: ([10]) Let (X,d) be a CAT(0) space, letx,y €
X, such that x#y. Then

H
1. [x,y]:{zmae[o,u”,z%:1}.
i=1

2. For all z € X the following holds:

n
(321"'32}15[55)’] such that Zd(z,21)=d(x,y))ifandonlyif
i=1

z € [xy].
3. The mapping r.[oaf* Sx], fe)=z, 15 COntnUOUS

and bijective

I
4 d(zy.2)< Z(xld(zl,z) < max{d(z,,z):1<i<n},
i=1

F
5. dzg.2) < Zaid(zl,z)z <max{d(z,,z)* :1<i<n},
i=1

6

) n
d(z4.2'g) < Z o, d(z,.2' ) smax{d(z,z' ) 1< j <n},
i, /=1

for &= (@)1= (B3 € [0.1] with f% :Z’Z:ﬁi "

=1 =1
and z, z, 7, € X for 1 < i < n which

Iy =005 D Doz, 'p=pH"1P DBz,

In the sequel we used this notation T, = -¢,T,
. .&aT, where T,... T, are maps on X, Such that
Tuelxy] forallue X, 1<i<nand & = (&,,...a,) € [0,1]"a
multindex satisfymg Y
Z(xl =1.
=1

Definition 1.4: ([11]) Let & = (&,,...,) € [0,1] be a
3

multiindex satisfyimng Z% -1 The maps 7,....T, on X are
i=1

said to be ¢-nonexpansive if

Hn
Y d T Tiy) < dix,y), (1.1
i=1

forallx, ye X,

For a simple case of the definition 1.4 we can consider
the following definition for a map.

Definition 1.5: Let & = (@,,..,2x,) € [0,1]" be a multiindex

3

satisfying Zai ~1 A mapping 7"X - X 1s said to be ¢-
i=1

nonexpansive if

3
Y od(T'x T y) < dix, y)
i=1

forallx, ye X,
Remark 1.6: The following observations are immediate.

1. The condition (1.1) mples that 7.7, are «-
nonexpansive and the mapping 7, is nonexpansive
when 7,....7, are nonexpansive in the hyperbolic
spaces (X.d) because by the Theorem 1.3 we

have d@arTyy)=d(efix® Doyl y® Dol )

i
S 0 (TinTiy) £d(n,9),
i=1
for every x, ¥ € X. However, the condition (1.1) 1s
stronger.
2. From o-nonexpansiveness of T, we have
o, @ Tx,Ty)<d(x, y) for all 1<i<n so, if & for some
1 <j<nthen T, is nonexpansive, in which case T, = T,
and if «;#0 for 1<i<p then T; is Lipschitz thus, it is
uniformly continuous.
3.  All nonexpansive mappings satisfy (1.1).
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Example 1.7: Let X = ¢ with dix,y) =[x, and B be its
unit ball. Define the mappmg 7': B -~ B by

2
T =T(a9,% %63, = (%7, ax3, %4, )

where _V17-1 T is  a-nonexpansive  with

05:(0&5'12):[%%] . The Lipschutz constant &(7) 13 2 and

k(TY =20 > 1. For further iterations,

n 2.2
Tx=(a"%,;,1,8%,2. %3, ), #z3.

All have the same  Lipschitz constant as
T2 (T = k(T*) >1. For more details refer [11].

MAIN RESULTS

Lemma 2.1: Let (X,d) be a complete CAT(0) space.
If 7.8 be two self map on X with I{T)NH(S) # ¢ and
U= (1-7=iS a self map onX for every £ € [0,1]. Then

(I) There exists a continuous map 7" on X such that
F(TY=FT)nFKS)

(i) dxI5) <Q-DdT'5.T9) +HAT'% %), for every x € X

(ii1) dEEL)Y=(-0dTTy)+1d(S5,.8), for every x,y € X and
F(T"y = F(U).

(1v) Further, if 7 and S be nonexpansive self maps on X,
then U is nonexpansive too and F{U) « F{(T"

Proof: (1), (i1) and (111) can be easily proved, so we prove
(). Letx e (W and y € F(T" s0

d*(xy) = d*(Uxy)
= (1- > (Txy)+Hd*(Sx,y) — (1 — )d*(Tx,8x)
=(1- Hd%(Tx. Ty td > (Sx.8y) — t(1 - ©d*(Tx, Sx)

< d*(xy)— t(1- Hd? (Tx, Sx),

therefore Sx = Tx = Ux =x namely x € F(T)NF(S) = F(T"),
which 1t completes (1v).0

Theorem 2.2: Tet (X d), be a complete CAT(0) space.
If7, = aTe. oal, where T,...7, are selfmaps on X for
1 < i< n, then

1. There exists a continuous map T on X such that

I
#n=[ )7
i=1

H
2. F(T)eF(Tyand gy 7,0 <) o757, for every
xeX i=1

3. If T, be nonexpansive selfmaps on X for 1 < ¢ < n,
then 7, isnonexpansive too and F(7,) ¢ F(T).

Proof: Letx=T'xsox=Tx for] < i < n, therefore,

Tox=oqfix@--Bolx=cpxD--Beo,x=1x,

because d(x, ax @..@0,x) =0, thus x = T x. This completes
(2). To prove (3) we have

i A

AT Tqy)< Y GdTxTy)< Y adlx,y) < dix, y),
i=1 i=1

So T, is nonexpansive.

We shall show that F(T,) < F(T") holds forn = 2. Tt is true
forn=2. Now

Consider Ty =0-0,)U@a,T, where

(4
v=-1

-1
—a, Tl@m@l—ﬂfn Ty-1-
Let y € F(T" and x € F(T,). Sincey € F(T") ¢ F(U) and
y € F(T") < F(T)
(24

1 y(-B,,,@My_
-0y 1-or,

forl ci1cnthusy=Ty=Tyso 5=
1

%

1-o,

Since g yy) = hence vy € F(UU) Now by

diy.y)=0

induction F(UJ) ¢ F(T"). Now since U is nonexpansive and
d*(xy) = d*(T,xy),
< (I—a, )d° (Uxyhra, d” (T,x3) — o0, (1— a, )d° (Ux T, ),

= (1- e, )d* (U, Uypor,d” (T, x. T, 3) — o6, (1— 06, )d° (U, T, ),
< d” (oy) - o, (1-, )d” (Ux T, ),

SoUx=Tx Tx=xand

x=Tx=(0-a,)Ux®a,lx=_1-a,)Uc® a,x=Uk,

then Ux = x = T x and so x € F(U)
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H

Since x € F(T) for 1 <1 < n—1sc xenp(mzp(y-)
i=1

thus T'x =x .

Lemma 2.3: Let (X,d) be a CAT(0) space, F,,=F(T,) and

S=(F(D)|T: X = X,F(f)#¢,F(Dclosed} U {6, X},

then

a) If Fxe3 forevery @ €1, then ﬂFoﬁf‘
24
3
b) If £e3 forl < i< n, then Upieg_

i=1

Proof: If nFGF‘P then nFa £33 Otherwise nFa is
o o o

nonempty and closed.
So by [1, Theorem 2.1] there exists continuous map T: X-

X such that F(T)=m=ﬂﬂx 80 ﬂﬁxeﬁ This

o o 24

completes (a).[]

Lemma 2.4: With assumptions of Lemma 2.3, if
z={F|7° e, Then Tis atopology on X’

Proof: By Lemma 2.3, 71s a topology on X[
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