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Abstract: Tn this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied.
Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient
accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam 1s moving
mn x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the
problem is a transient three-dimensional problem. Therefore, thermophysical properties such as heat
conductivity coefficient, density and heat capacity are functions of temperature and material states. The
enthalpy techmique, used for the solution of phase change problems, has been used in an explicit finite volume
form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient
temperature distribution in the semi-infinite body and the growth rate of the melt pool. Temporal variation of
laser beam intensity in two cases of continuous and pulsatile heat flux has been considered. The latter case is
a model of electrical discharge machiming (EDM). In order to validate the numerical results, comparisons were
made with experimental data. Finally, the results of this paper were compared with similar problem that has
used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier

theory on the temperature distribution and the melt pool size.
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INTRODUCTION

Investigation of meltng and solidification
phenomena 1s important in most heat transfer engineering
problems. For instance, in semiconductors producing
technology, welding, found, crystallization and etc. The
use of concentrated heat source energy such as laser and
electrical discharge machimng (EDM) are common
nowadays in melting various materials. Tn all of problems
like this, the solid and liquid phases are separated with an
wterface; mterface developing in the solid or liquid phase,
depends on both sides of the temperature gradients.

Rostami et al. [1] investigated the heating and
melting of a semi-infinite body due to a stationary laser
beam. Because the laser beam was stationary, the problem
was assumed to be axisymmetric. The numerical solution
was compared with experimental data and, because no
vaporization occurred at the surface of the workpiece,
reasonable agreement was seen.

Rostami and Raisi [2] studied the heating and melting
of a semi-infinite body due to volumetric absorption of
moving laser radiation. That was a transient three-

dimensional conduction problem with a moving heat
source and a moving phase boundary which was used
with an explicit fimte difference method. Temperature
distribution and melt pool size for moving and a stationary
laser beam were derived. In order to validate, the
numerical selution was compared with experimental data.
The comparisons showed that the numerical results were
fairly accurate.

Sadd and Didlake [3] investigated the melting of a
semi infinite solid in one dimensional based on non-
Fourier heat conduction law postulated by Cattaneo [4]
and Vemotte [5]. They confirmed that, unlike the classical
Fourier theory which predicts an infinite speed of heat
propagation, the non-Fourier theory implied that the
speed of a thermal distribution 1s finite and the effect of
thus finite thermal wave speed on the melting phenomenon
was determined. Finally they found out that, non-Fourier
results differ from the Fourier theory only for small values
of time.

Fangming jiang [6] investigated experiments on
porous material heated by a microsecond laser pulse
and the corresponding theoretical analysis. Some non-
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Fourier heat conduction phenomena were observed in
the experimental sample. The experimental results
indicated that only if the thermal disturbance be strong
enough (i.e., the pulse duration is short enough and the
pulse heat flux is great enough) it is possible to observe
apparent non-Fourier heat conduction phenomenon in the
sample and evident non-Fourier heat conduction
phenomenon can only exist in a very limited region
around the thermal disturbance position.

Abdel-jabbar et al. [7] investigated the thermal
behavior of a thin slab under the effect of a fluctuating
surface thermal disturbance, as described by the dual-
phase-lag heat conduction model. It is found that, using
the dual-phase-lag heat conduction model is essential
at large frequencies of the surface disturbance.
Mathematical criteria that specify the limits, beyond which
both the hyperbolic wave and the dual-phase-lag heat
conduction models deviate from the diffusion model,
were obtained.

Formulation of the Problem: A review of literatures
indicated that, all previous studied of the change-of-state
heat transfer problems were based on the Fourier heat
conduction law.

O=—kVT (1)

Eq. (1) along with the conservation of energy gives
the classical parabolic heat equation:

oT
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Many of the investigations indicated that Fourier's
model possesses several serious shortcomings. The most
prominent is that, this model implicates an infinite speed
of heat propagation. Cattaneo and later Vernotte
postulated a wave model for heat conduction in solids in
the form below:

99, 9x__koT )
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The quantity 7 is called the material thermal relaxation
time and is a physical result of a finite thermal
communication time between material points.

The conservation energy equation is given by:

0
9x =YGxtax + E(I)CT)dV )

Fig. 1: Schematic representation of the problem in the
two-dimensional case

Finally by wusing Cattaneo combination and
conservation of energy equations, hyperbolic heat
transfer equation may be expressed as:
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The corresponding volumetric heat generation is
given by [8]:

g:—d’“ =al,(1-Rye* (6)
dz

Fig. 1 shows a schematic of semi-infinite body.
Profile of the beam is considered circular and elliptical.
The intensity of the beam that has Gauss’ distribution
may be expressed as [9]:

“Lox2+v2)/ w?
Ig(x,y.0) = Iph(1)e [yt (7)

Is(x,y,0) = Iph(0)e [ w2+ w, ] 8)

In last equations, w is the beam radius in the circular
profile state; w, and w, are the beam radius in the x and y
directions, in elliptical profile state. /, is the radiation
intensity at the center of the beam and /(¢) stands for the
temporal variation of the intensity. In the case of
continuous heat flux, A(¢) has the constant value of unity,
whereas in the pulsatile case it varies with time according
to the following equation:

An-DA<t<@n-DAt n=123,.

Wi)=1  if
(An-1Ar <t <4dnAt ©)

Wi)=0  if

The temporal variation of A(f) in pulsatile case,
according to the above relation, is shown in Figure 2:
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Fig. 2: Variation of A(f) with respect to the time in
pulsatile case

The local intensity of radiation decreases inside the
material according to:

I,=1,(1-R)e ** (10)

Where R is the surface reflectivity and « is the
absorption coefficient of the material.

Eq. (5) must be solved for the solid and liquid phase
separately. The two solutions should then be related via
the energy boundary conditions at the solid-liquid
interface. The dependence of the position of the interface
on the temperature distribution makes the problem
complicated. One way to avoid this complexity is to write
the left side of Eq. (5) in terms of enthalpy:

Oe d%e Oe

or., o ., oT
— =— k— —(k—)+—(k—)+
ot or? ox 6x( )* ( 8y) 62( 62) &

an

In Eq. (11) e is term of enthalpy and may be expressed as:

e= J-pca’T (12)

Initial and boundary condition
Initially, the temperature is equal to 7, everywhere:

att=0: T=T (13)

Initially, the temperature variation is equal to zero

a 1=0: Ly (14)
ot
The boundary condition at the surface may be
expressed as:

at z=0: —K%:e(T)O'(T“—T;‘Hh(T—TQO) (15)

v

Fig. 3: Solid-Liquid interface in a two-dimensional view

Regions far from the source are supposed to be
uninfluenced by the source
at x > +oew: T=T,
at y-+e: T=T, (16)

Conditions at the Interface: The energy balance at the
interface is shown in Figure 3 may be written as [9]:

B 2
1+(%)2+(%)2 kvan—kcﬂ =L(18X X -V)
L oy 0z | Ox ox o 6[
oY, av. » [ er. ot %Y, ay
e R e B E Nl R A )
dx oz | oy dy or’
(17)
Z, oT, . o7, 2z 97,
( )+( ) k=L | = La—S+ =)
| Oz 0z

Where X, Y, Z indicate the coordinates of the
interface in the x, y and z directions, also s 9% 0Z
ot o ot
are the velocity components of the interface in the x, y
and z directions, respectively. Once the enthalpy of each
element is calculated, the following relations can be used
to obtain the corresponding temperature [1]:

T
€ = j pscsdl’ Ts =T
Tms

o= j pdl+L Ty >T (18)

m/

e,, e, are the amounts of the enthalpy in solid and liquid
phases, respectively.
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When an element contains both phases, x (i.e., the
volume fraction of the liquid phase) must be calculated
mitially. The average enthalpy can be calculated
afterward.

e=xe;+ (1-x)e, (19)

A procedure for the evaluation of the liquud fraction
x will be introduced later.

For (pc) an average value was assumed and by
substitution e e, from Eq. (18) mn Eq. (19), Eq. (20) can be
written as follow:

e=xL+ (pc)av(TiTm) (20)
Where, 7, 1s melt temperature.

Thermophysical Properties: The

properties of the material were allowed to vary with

thermophysical

temperatire and phase state of the material. These
properties for unalloyed aluminum may be expressed as
[10,11]:

Thermal conductivity coefficient g ( w
m'k
K, =226.67+0.033T 300K<T < 400K

)

K, =2266-0055T 400K<T < 933K

K, =63+0.03T 933K< T < 1600K
K., =114 1600K < T < 2723K
2D
Specific heat at constant pressure o)
P P Cpl Agk)
cp,=0762+4.67 x 107 300K <7 < 933K
ep, = 0921 T= 933K (22)
i Ky
Density (%€, 3)
b

p,=2767 —022T 300K < T= 933K 23
Emissivity coefficient £
£=72x10"T+35x107 24
Also, latent heat of diffusion 1s equal to:

- 3 I 25
1.=395x10 Ag (25

By using these equations, e,e, may be expressed as
two polynomial functions in order 3 and 2, respectively.

e, = 2108.4547 + 0.56227" — 3.4246 = 107° I"-2428827 8
e, = 2431 44T+ 0.12663T° + 9.4 = 10° (26)

{(pc),, Can be expressed as:

(pe)y, = x(pe); + (1 =x)(pe), (27)

Which (ge), and (oc), are related to solid and liquid
states, respectively.

By substituting Eq. (27) in Eq. (20), Eq. (20) can be
written as follow:

e =xL +(3068.22 —873.0%x)(T-T,) (28)

In the numerical solution when an element contains
only solid phase, the temperature can be calculated by
applying the first term of Eq. (26), using the Newton-
Raphson method. On the other hand, when an element
contains only liqud phase, the temperature can be
calculated by solution of polynomial fimetion of order
2 in second term of Eq. (26). If an element contains two
phases, Eq. (28) can be utilized to calculate the
temperature.

Numerical Solution: In order to save computation time,
the solution domain was divided into two regions: The
inner region, which contams the liquid and/or solid state
and the outer region, containing only the solid state. A
fine mesh was used for the inner region, where the
temperature gradients are large and the solid-liquid
interface 1s present. The dimensions of the mner domain
are smaller than outer region. On the basis of the work of
Hsu and Mehrabian et al. [12] Ijw is an important
parameter. If I < 1x10°, the maximum temperature in the
workpiece will not reach the boiling pomnt of aluminum.
Under this condition the maximum diameter of the melt
pool is approximately 2.4w and depth of melt pool is
nearly w for a stationary beam.

In numerical solutions often beam radius 1s
considered about 100gm. Based on these arguments, the
diameter of the inner region will be 240 microns (um).
But because of moving heat source it was chosen to be
300 microns. The outer boundary of the computation
domain was chosen such that conditions at mfimty

could be applied. The outer region radius usually is
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Fig. 4: Temperature variation of the surface central point
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Fig. 5: Grid generation in x-y and x-z planes

considered as 20 times of the beam radius. Then for a
beam with a radius of 100um the R, can be calculated as
follow:

R, =20xw = 2000um (29)

For determining the number of grids in the inner
region, the grid study was used. First, the temperature of
central point of body geometry versus the grid numbers
was drawn in Figure 4. The results showed that
temperature changing in 15" grid and higher can be
assumed uniform and can be neglected. As a result, the
grid numbers in inner region were considered as 15x15.

Grid numbers in z direction is considered as 13. Hence:

M,:Ay,:%:%ym . Az =12um (30)

Each 5 internal grids are equivalent to one external
grid. Therefore:

Ax, = Ay, =5x Ax; =100um, Az, =5xAz; =60um (31)

Finally, (15 x15 x13 =2925) rectangular grids were
used for the inner region and 57127 grids for outer region
(Figure 5).

RESULTS AND DISCUSSION

In numerical solution of Eq. (11) in explicit finite
volume form, the beam intensity was /, = 3.5x10°(W/n?’),
the target velocity Vw/2a, relaxation time 7= 0.2x107"
[13] and the beam radius was 100um. A pulse duration of
t,= 1ms was used and initial temperature was 300K.

Fig. 6 shows the maximum depth of the melt pool as
a function of the beam intensity. It is assumed that the
surface absorbs all of the beam energy. As it can be seen
from Fig. 6, the numerical analysis is in good agreement
with the experimental data, for low beam intensity.
However, in the wake of the reaching to the vaporization
threshold, the numerical analysis and experimental data
are becoming further from each other.

Fig. 7 shows the depth of the melt pool as a function
of the radius distance from the center of the beam. In this
Fig. it can be seen that, there is negligible difference
between numerical analysis and experimental data.

The temperature distribution of the center point as a
function of time at various velocities is shown in Fig. 8.
As it is observed, as much as the velocity of the beam
increases, the temperature of the point decreases. This
phenomenon is observed, due to the fact that as much as
the velocity increases, the amount of energy that the
specific point observes decreases.

1277



World Appl. Sci. J., 11 (10): 1273-1281, 2010

2 —
B O0oo0 Experimental[14] a
r Numerical
,__\1.5 -
=20 a
ey L
tq L
S
FARTS
¥ -
=]
=
= u
=} a
05
o a
0_........___-...|..........|..........|..........l
0 2*E5 4*E5 6°E5 8*E5

Absorbed Energy (Iuwf1_581)
Fig. 6: Melting pool depth versus laser beam intensity at

the center
08
- eoeeNumerical
i ooon Experimental[14]
I ILw/1.581=33*e5(w/m)
0B
2
~
N
N’
E. 04
&
=]
3
-
0.2
R R |

ol 1 TN
0 02 04 06 08 1 12 14

Ridial Distance (r/w)
Fig. 7: Melting pool depth versus radial distance from
the laser beam center

2000 -
—~
v 600
o n
P u
 F 2
£ 200F I, =35%e(w/m")
g C seEs YW/ 2a=10
& y soee vw/2a=03
¥ so0f =ttt vy [ 200 = 0.45
&
= 3
w2
400 F
¢_
0 I PR AT S IS TR S T | TR PR |
0 02 04 06 08

Dimensionless Time (t / f, )

Fig. 8: Surface center point temperature with respect
to the time at various speeds and intensity of
I, = 3.5% 10° (W/m?) in continuous heat flux case

25

)
T

X-Diameter'w
o
T

1R aaeg vwWw/2a=03
et YW/ 20 = 0.45

05

0 - L 1 - P L 1 P P n 1 P |
0 01 02 03 04 05 06 07 08 09 1
Dimensionless Time (t / tp )

Fig. 9: Melting pool diameter on the x-axis with respect

to the time for two different speeds in
continuous heat flux case

I, =3.5%e9(w/ m’)
ee.e.et/tp =0.05
rtraar 114, =0.1
aaest/f, =02
sooel/i,=03
aaag t/t,=05
vw/2a =045

s 0w |

05 1 15

IR B
155 X 05

(x;SJ w)
Fig. 10: Melting pool image on the x-y plane at a
constant velocity and different times for a
circular laser beam in continuous heat flux case

Fig. 9 shows the diameter of the melt pool along x
direction at z=0. It can be seen that, as much as the
velocity of the beam increases, the diameter of the melt
pool along x direction increases slightly. On the other
hand, by increasing the velocity of the beam, the diameter
of the melt pool along y direction decreases.

The solid-liquid boundary of the melt pool in the xy
plane for V%a=o_45 is shown in Fig. 10. It can be

perceived from Fig. 10 that, because of the moving
beam, the melt pool tends to the right. Also, as time
passes, the diameter of the melt pool increases and
eventually it reaches to a specific value.

Fig. 11 shows the solid-liquid boundary of the melt
pool in xz plane for V%a =..3. Due to the moving beam,
the melt pool tends to the right.

1278



World Appl. Sci. J., 11 (10): 1273-1281, 2010

?ua reeas {/(, =005
- et £/ {, — 1.1
S osl epee /1, =02
raooot/t, =03
[ Bpem /1, =05

I, =35%9(w/m’)

vwwilae=-03

1 PRI S [ SRR T N SR TR T PO S S PR S SR B SRR

14 1 05 r ns 1 1E
(x/w)
Fig. 11: Melting pool image on the x-z plane at a constant
velocity and different times for a circular laser
beam in continuous heat flux case

Swiface Temperatwe

vw/2a =045 tltp =05

AN

035 0 05 1
(x/w)
Fig. 12: Temperature contours in the x-y plane for circular
laser beam in continuous heat flux case

Surface Temuerature (k)

vw/2a = 0.31 t/!p =05
15F
1_
05
/‘é\ |
~ O0F
~ L
p—
05
Ak
15
[ 1 N1 N (- L /1
15 1 05 0 05 1 15
(x/w)

Fig. 13: Temperature contours in the x-y plane for
elliptical laser beam in continuous heat flux case

Melt Diam ete{d w)

B85 Y-Dinmeter

06
- 28688 X-Diameter
041 w; = 50um
N w, =100zm
0.2
0 [ & 1 ! 1 ! 1 ! 1 !
0 02 04 06 0.8

Dimensionless Time (t / {p )

Fig. 14: Melting pool diameter on the x and y axes versus
time for elliptical laser beam in continuous heat

flux case
2000

1500

000 . . .
1 I eeee Fowier with continnous Leat flux

saaa Hyperbolic with continuous heat flu
2racae Hyperbolic with pulsatile heat flux

Surface Temperature (X)

I, =3.5%e(w/m’)

500
ww/2a=0

[} NAFIE IS AT R | 1

R T R BN N B
0 01 02 03 04 05 06 07 08 O
Dimensionless Time (¢ /£, )

. |
9 1

Fig. 15: Surface central point temperature versus time
using Fourier and Hyperbolic methods

Fig. 12 shows the isotherm in xy plane for specific
time and beam intensity, but for various beam velocity.
The temperature fields are not symmetric due to the
moving laser beam. It can be observed that, the
temperature curves are more intensive at the left of the x
direction.

Fig. 13 shows the isotherm in the xy plane when the
elliptic beam is used.

The diameter of the melt pool along x and y directions
are shown in Fig. 14, by using the elliptic beam.

Now, we are comparing the result of this paper and
another paper, which has used fourier model.

Fig. 15 shows the temperature of the center point.
It can be perceived from Fig. 14 that, the temperature of
the center point increases faster, when the Fourier
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using Fourier and Hyperbolic methods

model is employed. But, the Fourier model and hyperbolic
model reach each other by passing the time. This result
was predictable, because the fourier and the hyperbolic
models differ just in short times. The temporal variation
of surface central point temperature for the pulsatile case
is also shown in Fig. 15. The ultimate temperature of the
central point in this case is less than that of the
continuous case, which is due to lower value of total
received energy from the laser beam radiation.

Fig. 16 shows the depth of the melt pool as a function
of time for a dimensionless velocity (translational speed)
of V%a=o.45. As it can be observed from Fig. 16, in

comparison to the other cases, the melt pool is deeper
when Fourier heat conduction is applied.
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Fig. 18: Melting pool image on the x-y plane for a circular

laser beam using Fourier and Hyperbolic
methods
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Fig. 19: Melting pool image on the x-z plane for a circular

laser beam using Fourier and Hyperbolic
methods

Also, the diameter of the melt pool along x direction

at z=0 for dimensionless velocity V%a= 245 , is shown in
Fig. 17. It can be seen from this Fig. that, the diameter of
the melt pool along x direction, using Fourier model, can

increases faster and finally it reaches to a specific value.

The solid-liquid boundary in xy plane at 1L=o_5 for
p

V%a =.45 is shown in Fig. 18. As it can be predicted from

Fig. 17, the size of the melt pool in xy plane when Fourier
model is used, is greater than when the hyperbolic model
with continuous and pulsatile heat flux is used.

Fig. 19 shows the solid-liquid boundary of the melt

pool in xz plane at im,s for Vw/ =45 . According to

Fig. 19 it can be concluded that, using Fourier model, the
size of the melt pool in xz plane is greater than the same
melt pool obtained from the hyperbolic model in the two
continuous and pulsatile cases.
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CONCLUSION

The temperature distribution and the size of the melt
pool for an aluminum solid under the laser beam were
studied. The hyperbolic heat equation was applied. The
results of the hyperbolic model and the Fourier model
were compared and it was seen that the mcrement of the
melt pool and temperature fields were slower, when the
hyperbolic model in continuous and pulsatile cases was
applied. This phenomenon is in the wake of the infinite
speed of the thermal waves in Fourier model. Also it was
deduced that, the hyperbolic heat conduction model is
suitable for short times and large domains and it can
reached to the accurate results. In general, in practical
applications such as electrical discharge machiung
(EDM), the pulsatile model has a better effectiveness than
Fourier and continuous hyperbolic models.
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