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Abstract: Wideband speech coding has become an important research area in the speech processing field.
Algebraic code exited linear prediction (ACELP) algorithm has been adapted for narrowband and wideband
speech coders such as adaptive multi-rate wideband (AMR-WB). In AMR-WB, immittance spectral frequency
(ISF) parameters are sent to decoder, instead of linear prediction coding (LPC) coefficients. To reduce the bit
rate in AMR-WB, vector quantization (VQ) technique is used. On the other hand, artificial neural networks
(ANNs) can be used for VQ. Tn this paper, three hybrid models are presented for quantization of ISF parameters
in AMR-WB speech coders. These models are "hybrid of switched split vector quantizer (S-SVQ) and split
multistage vector quantizer (S-MSVQ)", "hybrid of self organizing map (SOM) neural network and 5-MSVQ"
and "hybrid of growing hierarchical SOM (GHSOM) neural network and 3-M3V(Q". Experunental results show
that the hybrid model of GHSOM and S-MSVQ performs better than traditional S-SVQ and S-MSVQ models.
The performance of GHSOM and S-MSVQ hybrid model is also better than two other hybrid models in
computational complexity reduction. The number of bits per frame 1s also reduced 1n this hybrid model, without

significant degradation in spectral distortion.
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INTRODUCTION

In recent years, wideband speech coding has
received attention from many researchers. The range of
frequency 1 narrowband and wideband speech 1s
considered as 300-3400 Hz and 50-7000 Hz, respectively.
Algebraic exited linear prediction (ACELP)
algorithm [1] has been adapted for narrowband and
wideband speech coders such as adaptive multi-rate
wideband (AMR-WB) [2, 3] and adaptive multi-rate
narrowband (AMR-NB) [4], respectively. Although,
narrowband speech coding does not offer high quality,
which is due to a lack of naturalness and spealker
‘presence’ (as experienced 1n face-to-face speech
commumication) and also difficulty of distinguishing
fricative sounds [5].

In AMR-NB, the 10" order LPC is used for
representation of spectral envelope which has captured
two formants of speech below 4 kHz However, three
formants which belong to higher than 4 kHz are not
detected [6]. In AMR-WB, which is standardized by 3
Generation Partnership Project (3GPP) for global system
for mobile (GSM) and third
generation/wideband code division multiple access

code

commurnications

(WCDMA 3G) system [7], 16" order linear prediction
coding (LPC) 18 used to achieve higher quality. Thus,
high frequency formants are captured by increasing the
order. LPC coefficients are not directly sent to decoder in
most of speech coding algorithms. In this way, some
conversions are preformed on it, e.g. LPC to line spectral
paur (LSP) and LSP to immittance spectral frequency (ISF)
conversions [8, 9]. To send ISF parameters to decoder,
many bits are needed. Thus the bit rate of coding is
increased. So, vector quantization (VQ) technique is used
to reduce the bit rate. In this way, only the index of
corresponding vector is sent to the decoder, instead of
ISF parameters.

The aim of VO 1s to represent a set of vectors
xeXcR”® by a set of codevectors v={v, v,.. v }cR which
generate a codebook. Design of codebook can be
performed by clustering algorithms such as C-means and
fuzzy C-means algorithms [10]. Several methods, such as
switched split vector quantizer (3-SVQ) [11, 12] and split
multistage vector quantizer (S-MSVQ) [13], are used to
reduce the complexity and bit rate of the coders. All of the
quantization techniques need a codebook generation
algorithm e.g. generalized Lloyd algorithm (GLA) which
was also known as LBG [14].
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Artificial neural networks (ANNs) can also be used
for VQ. For example, an efficient way of exploiting self
organizing maps (SOMs) for a fast search quantization
procedure 1s presented in [15] that reduces the complexity
of spectral envelope VQ, sigmficantly. A modified
Hopfield neural net 15 also used to search m the codebook
of a CELP coder [16]. A codebook design algorithm for
L.D-CELP, based on a modified self-organizing feature map
(SOFM) neural network, is introduced in [17]. A neural
network-based vector quantizer for low bit-rate coders is
also proposed in [18]. Complexity reduction of LD-CELP
speech coding in prediction of gain using Elman, multi-
layer perceptron (MLP) and fuzzy ARTMAP neural
networks 1s reported in [19]. Multi-SOM structure 15 used
m [20] for codebook search in LD-CELP. Also, fuzzy
ARTMAP neural network 1s used to reduce the codebook
search time 1n G.728 speech coder [21].

In this paper, we apply some changes to 3-SVQ and
S-MSVQ techmiques to develop new schemes for
quantization of ISF parameters. In this way, we use SOM
[22, 23] and growing hierarchical SOM (GHSOM) [24, 25].
Tt is noted that GHSOM is a dynamically growing
hierarchical structure of SOMs according to the input
data.

The rest of paper is organized as follows. Section 2
gives a brief overview of the AMR-WB ISF quantization
scheme. The hybrnd model of S-SVQ and S-MS3VQ 1s
mtroduced in Section 3. Hybrid-models of "SOM+S-
MSVQ" and "GHSOM-+S-MSVQ" are mtroduced in
Secttion 4 and 5, respectively. Empirical results are
reported m Section 6. Finally, conclusions are provided in
Section 7.

AMR-WB ISF Quantization Scheme: The AMR-WB
speech codec is standardized by 3" Generation
Partnership Project (3GPP) for GSM and WCDMA 3G
systems. This codec is multi-rate with nine different
modes. According to the functional block diagram of this
codec, after decimating input speech from 16 kHzto 12.8
kHz, the decimated signal 1s preprocessed and then linear
prediction (LP) parameters of synthesis filter are extracted
based on the CELP model [3]. These parameters should be
converted to LSPs for more stability [26]. Also, LSPs are
converted to ISFs and then quantized. The ISF
representation is as follows:

S .
=2 arccos(q;);, i=1,2, ..,
hi=o (g;) M

J:
fi= —4; arccos(q,);
‘Where:
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#18 ISF in the range of [0,6400] Hz and sampling frequency

{f.) 18 equal to 12800 Hz and g,1s L SP 1n the cosine domam.
This paper is focused on ISF quantization scheme
modifications. In AMR-WB, a 1"-order moving average
(MA) prediction is applied to ISF vector. The prediction
residual vector, (7, 1s given by:

r(n) = z(n)-pin) (2)

Where:

p(n):ij;(n_j)_ #(n— 1y 18 the quantized residual vector n

pervious frame. z(n) denotes the mean-removed ISF
vector at n* frame [3].

In the hybrid scheme of split vector quantization
(SVQ) and multi-stage vector quantization (M-SVQ),
which 1s called S-MSVQ, the residual LSP vector is
quantized. Fig. 1 shows the quantization scheme in
AMR-WB [2, 3]. As shown in Fig. 1, #(s) 1s split to »,(n)
and r,(n) of dimensions 9 and 7, respectively. Then, these
two vectors are quantized separately with two codebooks
{(with the size of 256x9 and 256x7). Then, quantization
errors are calculated (Error, Quant, I=1,2) and split
(into 3 subvectors of dimensions 3, 3 and 3 for r,(n) and
into 2 subvectors of dimensions 3 and 4 for r,(n)). Then
quantization 1s performed according to five codebooks
with the size of 64x3, 128x3, 128x3, 32x3 and 32x4,
respectively (Fig. 1). Table 1 shows the bit allocation in
ISF quantization scheme [3].

Hybrid of S-SVQ and S-MSVQ: The switched split vector
quantization (S-3VQ) is a hybrid scheme of switched
vector quantization and split vector quantization, which
was mtroduced by So and Paliwal [11]. In this scheme, the
vector space is classified into m clusters in the following
steps:

» LBG algorithm 1s applied to all of the vectors to
produce m centroids (C; i=1: m)
¢+ The index of row which minimizes the Euclidean
distortion between input vector and centroids (C)) is
found using (3) [6]:
Cluster, = argmin, d(input,C,) (3
These m centroids are the best in Voronoi region.
A group of vectors is assigned to each of these m
centroids and a distinct SVQ is used for each of them.
After codebook training phase, all of the designed
codebooks located

are in the corresponding part.
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Table 1: Rit allocation for ISF quantization scheme in AMR-WR [3]

Vector Firr Firm) Ervor;_Quant; Error;_Quant, Error;_Quemt; Error, Quant; Ervor; Quant,
Number of bits 8 8 6 7 7 5 5
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Fig. 1: ISF quantization scheme in AMR-WB
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Fig. 2: Hybrid model of S-SVQ and S-MSVQ for ISF quantization

Each mput vector 1s first switched to one of m clusters,
based on (3) and then split and quantized using the
corresponding codebook.

S-SVQ has better rate-distortion efficiency and lower
computational complexity, as compared to SVQ [11, 12].
Indeed, it 18 a hybrid scheme that combines the
advantages of SVQ, i.e. lower computational complexity
and split vector quantizer. Another method in this field is
S-MSVQ. As mentioned earlier, S-MSVQ is based on SVQ
and M-SVQ that improves the rate-distortion efficiency.
The basic idea of S-MSVQ is to divide the quantization
into successive stages, where the first stage performs a
relatively crude quantization and the second stage
quantizes the error vector between original and quantized
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output of the first stage. When there 1s high correlation
between the components, S-MSVQ i1s preferable as
compared to SVQ. The rate-distortion efficiency of 3-
MSVQ 1s better. However, the complexity of S-MSVQ 1s
higher than SVQ.

In this way, a hybrid model of 3-SVQ and S-MSV(Q 1s
proposed in this paper to collect all the advantages of S-
SVQ and S-MSVQ. In this model, the vector space is first
classified into ¥ clusters (m=8&) and then for each of the
mentioned clusters, which has a group of vectors, all of
the vectors are split into 2 subvectors, #,(») and #,(n), of
dimensions 9 and 7, respectively. Fig. 2 shows the block
diagram of proposed hybrid model. In this figure, the
block of S-MSV(Q has the same structure as Fig. 1.
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Fig. 3: Hybrid model of SOM and S-MSVQ for ISF quantization

Hybrid of SOM and S-MSVQ: In this section, a new
hybrid scheme for ISF quantization is introduced by
employing SOM for codebook generation. Using SOM in
the application of codebook generation is noteworthy in
various areas such as image processing [27-30]. SOM 1s
a good solution to classification problems. The steps of
codebook generation using SOM are as follow:

Step 1. gather the training data;

Step 2. specify the suitable map size for current
application, because of its dependency on the
codebook size;

Step 3: Find the best-matching node and its neighbors;

Step 4: Update the weights of network.

Figure 3 shows the ISF quantization scheme using
hybrid model of SOM and S-MSV Q. The specifications of
SOM, which 1s used in generating new codebook, are
listed in Table 2. As shown in Table 2, SOM generates a
codebook with the size of 256x16. It 13 noted that the map
size 15 16x16 (256) and the input vector has 16
components.

Hybrid of GHSOM and S-MSVQ: In this section, ISF
quantization is performed using GHSOM for codebook
generation.  Although, SOM
networks i high-dimensional data applications, but it
has some problems and limitations because of a single

is one of the stable

self-organizing layer with a fixed number of neurons.
A model which resolves these problems 13 GHSOM,
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Table 2: SOM specifications in hybrid model

Specification Value or type
Map size 16x16
Neighborhood function Gaussian
Distance metric Euclidean
Number of input features 16
Training mode Batch
Rough Training

Initial learning rate 0.5

Initial radius 3

Final radius 1

Fine Training

Initial learning rate 0.05
Initial radius 1

Final radius 1

which is a dynamically growing architecture that grows
into a hierarchical structure of SOMSs according to the
input data. The structure of a GHSOM is shown in Fig. 4.
One of the most advantages of GHSOM 1s capability of
adding independent SOMs according to the mput data
requirements. Also, it is not necessary to predefine the
size of each SOM.

The starting point in growth process is to find the
overall deviation of mput data as measured with the
single-unit SOM at layer 0. A weight vector, my, is
assigned to this unit that is the average of input data:

my=[Hy Mg My I ()
12 h
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Fig. 4: GHSOM structure

For this unit, which is a single unit in layer 0, the
mean quantization error (MQE) is defined as:

1 5
=y ®

mqey
Where:
d is the number of input data elements.

After calculating mge,, GHSOM is trained with its first
layer SOM which initially consists of a rather small
number of units, e.g. a grid of 3x2 units as shown in
Fig. 4. In this Figure, the map in layer 1 consists of 3x2
clusters and provides a rather rough organization of the
input data. The six independent maps in the second layer
offer a more detailed view of the data. The same process
which was performed in layer 0, is repeated in other layers.
It is noted that the process of learning in GHSOM is
similar to SOM in which the weight vector of winner and
the units in vicinity of winner are adapted in such a way
as to resemble more closely the input pattern.

Weight adaptation process is performed as follows in
which learning-rate parameter, o, is decreasing with time:

m(t + 1) =m(1) = a(Dh,(Ox@O)-m()]  (6)
Where:
h,(t) is the neighborhood function, x(z) represents the
current input pattern and c refers to the winner at iteration
t. For all of the neurons in first layer, mge, is calculated

Laver 0
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using an equation similar to Eq. (5). Indeed, each layer of
the GHSOM is responsible for explaining some portion of
the input data deviation. Based on the mean quantization
error (MQE) in all of the units of each SOM, we decide
whether each of the SOM’s layers should be grown or
not. If MQE of each layer of SOM satisfies inequality (7),
anew row or a new column of units is added to this SOM.
MOQE, > t,mge, @)
Where:
T,, is a fraction of quantization error in layer 0 and t,,mge,
is considered the same for all other layers.

The procedure of adding continues until a
suitable size of the map is reached. Let, threshold
7,, as a fraction of quantization error in layer 0. The mge,
with a value grater than 7, is considered as mge, and
indicates the maximum dissimilarity between the weight
vector and input pattern. Now, the new row or column is
inserted. Selection of a row or a column depends on the
position of neighbor having the most dissimilar weight
vector. The average weight vectors of existing neighbors
are chosen as the initial value of new units' weight
vectors. Once, the insertion phase is terminated, the
process is repeated.

The block diagram of the proposed model is shown
in Fig. 3, with SOM replaced by GHSOM. The size of
designed codebook is 40x16. The GHSOM specifications
are listed in Table 3.
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Table 3: GH3OM specifications in hybrid model

Specification Value or type
Codebook size 40x16
Neighborhood function in all cases

1: layer 1" neigh

2: sub_layer_neigh

3: grow_map_neigh Gaussian
Distance metric Euclidean
Number of input features 16
Training mode Batch
Initial radius of layer_1%_radius 1.5

Final radius of layer_1* radius 0.5
Initial radius of sub_layer_radius 0.1

Final radius of sub_layer_radius 0.1

Initial radius of grow_map_radius 0.8

Final radius of grow_map_radius 0.1
Breadth (which controls the breadth of maps) 0.6
Depth (which controls the depth of maps) 0.1

Experimental Results: The performance of three
proposed models, in terms of computational complexity,
spectral distortion (SD) and number of bits per frame are
compared with traditional S-SVQ and S-MSV(Q ISF
quantization methods. For this purpose, an AMR-WB in
12.65 kbit/s mode is implemented [3]. The training dataset
consists of 1048576 vectors and the test set consists of
10240 vectors from 51 different speakers (twenty five men
and twenty six women). FARSDAT speech database is
used in this work. FARSDAT is a Farsi continuous
speech corpus including 6000 utterances from 300
speakers with various accents [31].

The number of additions, multiplications and
comparisons of five different ISF quantization methods,
for one frame of speech, are reported in Table 4. As a
result, the proposed "GHSOM+S-MSVQ" hybrid model
has the least computational complexity.

Spectral distortion (SD), as another performance
criterion, 1s defined as follows [32]:

Table 4: Computational complexity comparison of different TSF quantization methods

Number of operations

Operation 3-8VQ S-MSVQ Hybrid of 8-8V(Q and $-MSVQ Hybrid of SOM and 3-MSVQ  Hybrid of GHSOM and §-MSVQ
Addition 11512 9664 9912 9920 3224
Multiplication 6784 5280 5408 5280 1824

Comparison 2056 89g 904 640 424

Table 5: Average spectral distortion of S-MSV(Q as compared to three proposed hybrid models

Methad §-MSVQ Hybrid of S-SV and $-MSVQ

Hybrid of SOM and 8-M3VQ Hybrid of GHSOM and §-M3V(Q

Avg. SD (dB) 0.6050 0.6061

0.6060 0.6061

Table 6: Number of bits per frame in different ISF quantization methods

Method §-8VQ §-MSVQ  Hybrid of $-8VQ and 8-MSVQ  Hybrid of SOM and $-MSVQ  Hybrid of GHSOM and 8- MSVQ
Number of bits 46 46 49 38 36

SD, = [(xkﬂek)z (8) CONCLUSIONS
Where: In this paper, three hybrid models for quantization of
x, andy ~ are LPC coefficients before and after  ISF in adaptive multi-rate wideband (AMR-WB) speech

quantization in frame £, respectively.

The average SD of S-MSVQ ISF quantization method
and three proposed hybrid models are shown m Table 5.
As can be seen, the average spectral distortion is
approximately the same for S-MSVQ and three hybrid
models.

The number of bits per m 3-SVQ, 5-
MSVQ and three proposed hybrid models are
reported in Table 6. As a result, the proposed
"GHSOM+3-MSVQ" hybrid model has the least number
of bits per frame.

frame
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coder were proposed: "S-SVOQ+S-MSVQ", "SOM+S-
MSVQ" and "GHSOM+S-MSVQ". Experimental results
showed that the "GHSOM+S-MSV(Q" hybrid model
performs better than traditional S-SVQ and S-MSVQ and
two other hybrid models. In tlis way, the number of
multiplications,  additions and comparisons in
"GHSOM+S-MSVQ", as compared to S-MSVQ, was
reduced 66.6%, 65.5% and 52.7%, respectively. The
number of bits per frame in proposed "GHSOM+S-MSVQ"
model, as compared to S-MSVQ, was also reduced 21.7%
with no significant change in spectral distortion, as well.
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