
World Applied Sciences Journal 10 (Special Issue of Computer & Electrical Engineering): 20-31, 2010
ISSN 1818-4952
© IDOSI Publications, 2010

Corresponding Author: Mr. Hamed Moradipour, Sama Technical and Vocational Traning School, Islamic Azad University, 
Babol Branch, Babol, Iran

20

Robust Object Tracking in Crowded Scenes Based on
the Undecimated Wavelet Features and Particle Filter
1Hamed Moradipour, 1Hossein Ashtiani and 2Amir Aliabadian

1Sama Technical and Vocational Traning School, Islamic Azad University, Babol Branch, Babol, Iran
2Faculty member of Electronic & Electrical Department, Shomal University

Abstract:  A Scale Invariant Feature Transform (SIFT) based on particle filter algorithm is presented for 
object tracking. We propose a new algorithm for object tracking in crowded video scenes by exploiting the 
properties of Undecimated Wavelet Packet Transform (UWPT) and particle filter. SIFT features are used to 
correspond the region of interests across frames. Meanwhile, feature vectors generated via the coefficients 
of the UWPT is applied to conduct similarity search that is based on particle filter. The advantage of using 
structural similarity index UWPT domain is that it allows spatial translations, rotations and scaling 
changes. Experimental results show that the proposed algorithm has good performance for object tracking 
in noisy crowded scenes on stairs, in airports, or at train stations in the presence of object translation, 
rotation, small scaling and occlusion.
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INTRODUCTION

As an active research topic in computer vision, 
visual surveillance in dynamic scenes attempts to
detect, recognize and track certain objects from image 
sequences. Tracked objects in video sequences can be
used for many applications such as video surveillance, 
visual navigation and monitoring, content-based
indexing and retrieval, object-based coding, traffic
monitoring, sports analysis for enhanced TV broad-
casting and video postproduction. The goal of object
tracking is to determine the position of the object in 
images continuously and reliably against dynamic
scenes [1]. To achieve this target, a number of elegant 
algorithms have been established. 

Two major components can be distinguished in a 
typical visual tracker. Target Representation and
Localization is mostly a bottom-up process which has 
also to cope with the changes in the appearance of the 
target. Filtering and Data Association is mostly a top-
down process dealing with the dynamics of the tracked
object, learning of scene priors and evaluation of
different hypotheses. For example considering Gaussian
and linear problems, Welch and Bishop [2] presented a 
Kalman filter-based method for tracking a user’s pose 
for interactive computer graphical. The proposed
single-constraint-at-a-time (SCAAT) tracking utilized 
single observations from optical sensors and fused the 
measurements from different sensors in order to
improve the tracking accuracy and Stability. As a
promising solution to non-Gaussian and non-linear
systems, particle filter-based approaches have been

included in current tracking technologies. These
schemes [3, 4] recruited particles for computing a
sampled representation of the posterior probability
distribution over scene properties of interest, based on 
image observations. Other tracking strategies can also 
be found as Multiple Hypothesis Tracking [5, 6],
kernel-based tracking [7, 8] and optical flow-based
tracking [9]. 

Both target localization and registration maximizes 
a likelihood type function. In mean shift tracking
algorithms, a color histogram is used to describe the
target region. The Kullback-Leibler divergence,
Bhattacharyya coefficient and other information-
theoretic similarity measures are commonly employed 
to measure the similarity between the template (or 
model) region and the current target region. Tracking is 
accomplished by iteratively finding the local minimum 
of the distance measure functions. 

The method in [10] uses a particle filter to track 
global statistics of object shape and color. Inserting 
color to the state of the particle filter yields robustness 
to background clutter and occlusions. Sampling in the 
state space, however, is rather expensive. In fact, the 
clutter problem can also be overcome by using a more 
discriminative appearance model.

A HMM is normally used to extract the
transformation between two images or moving 3D
structures in object tracking. However, this is not 
deterministic and since the model is hidden, there may 
in fact be more than one possibility of transformation 
that results in the feature positions. Thus the most likely 
sequence of transitions is sought. Using algorithms such 
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as the Baum-Welch algorithm and its modifications
[11], people train HMM by adjusting the weights of the 
transitions to better model the relationship of the actual 
training samples. HMM-based approaches do not
require analytical solutions to certain problems, being 
effective in handling very complicated environments. 
Nevertheless, the required training stage in HMM must
be supervised and it is difficult to apply a pre-trained
HMM for the overall applications. Similarly, an ANN 
also needs to determine its weights by training,
although ANN methodology has been optimistically 
applied to object (or motion) tracking [12, 13].

Most of the existing algorithms are unable to track 
objects in the presence of variations in illumination, 
appearance and camera angle, as most of these
algorithms working in spatial domain use features
which are sensitive to these variations. In recent years 
the wavelet feature based techniques have gained
popularity in object tracking. One of the features of 
Discrete Wavelet Transform (DWT) is that the spatial 
information is retained even after decomposition of an 
image into four different frequency coefficients.
However, one of the major problems with real wavelet 
transform is that it suffers from shift-sensitivity [14]. 
Undecimated Wavelet Packet Transform (UWPT) has 
been used to overcome the problem of shift sensitivity.

The main contribution of the paper is to introduce a 
new framework for efficient tracking of non-rigid
objects. In this work for target representation and
localization use the SIFT algorithm. This approach
transforms an image into a large collection of local 
feature vectors, each of which is invariant to image 
translation, scaling and rotation and partially invariant 
to illumination changes and affine or 3D projection. For 
tracking we use the particle filter that it is based on 
feature vectors generated via the coefficients of the
Undecimated Wavelet Packet Transform (UWPT). The 
key advantage of UWPT is that it is redundant and 
shift-invariant and it gives a denser approximation to 
continuous wavelet transform than that provided by the 
orthonormal discrete wavelet transform [15, 16]. In 
contrast to the conventional methods for solving the 
tracking problem that use spatial domain features, it 
introduces a new transform domain feature-based
tracking algorithm that can handle object movements, 
limited zooming e.ects and, to a good extent, occlusion. 
Moreover, we have shown that the feature vectors are 
robust to various types of noise [17, 18].

This paper presents a new algorithm that satisfies 
the two qualities: simplicity and robustness. Simplicity 
implies that the algorithm is easy to implement and has 
the minimum number of parameters. Robustness
implies the ability of the algorithm to track objects 
under difficult conditions which include: 

• Occlusions and lighting changes.
• Changing of object orientation or view point.
• Track both rigid and nonrigid objects without any 

preassumption, training, or object shape model.
• Efficiently track the objects in the crowded video 

sequences such as crowds on stairs, in airports, or 
at train stations. 

• Robust to different types of noise processes such as 
additive Gaussian noise

• Partial occlusion of the object can be successfully 
handled.

• Efficiency tracks the object in a moving camera.

OVERVIEW OF THE UWPT

The discrete wavelet transform gives good
frequency selectivity at lower frequencies and good 
time selectivity at higher frequencies. This tradeoff in 
the Time -frequency (TF) plane is well suited to the 
representation of many natural signals and images that 
exhibit short duration high-frequency and long-duration
low-frequency events.

The discrete wavelet transform for a one
dimensional  signal  decomposes  the  signal  into  two 
sub-bands called approximations (resulted from
convolving the original signal by a low-pass filter) and 
details (resulted from convolving the original signal by
a high-pass filter). It also decimates the output of filters 
and hence, at each level of decomposition the length of 
the signal is halved. Moreover, continuing the
decomposition, it decomposes only the approximation 
sub-band. In order to have a more complete
interpretation of the signal behavior a wavelet packet 
transform is applied to decompose also details, but it 
still decimates the filters outputs. An undecimated 
wavelet packet transform repeats the filtering on both 
the low-pass and the high-pass bands without any down 
sampling. Therefore, the UWPT expansion is redundant 
and provides a denser approximation [19, 20]. For a 2D 
signal (image), the UWPT decomposes each sub band 
into four sub bands at each level. 

The desired transform for object tracking
application should be linear and shift-invariant. The 
wavelet transform, which is both linear and shift-
invariant, is the Undecimated Wavelet Packet
Transform (UWPT) [21, 22]. Moreover, the UWPT 
expansion is redundant and provides a denser
approximation compared to the approximation provided 
by the orthonormal discrete wavelet transform. From 
the   implementation   point  of  view  in  the  context
of filter banks, in addition to the low pass band, we 
repeat the filtering on the high pass band without any
down sampling (decimation). The result is a complete 
undecimated     wavelet    packet    transforms.   A   tree 
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Fig. 1: Undecimated wavelet packet transform tree for 
one dimensional signal S

representation and sample bands of UWPT are depicted 
in Fig. 1.

THE PROPOSED ALGORITHM

Overview of the proposed algorithm: The aim of 
temporal tracking is to locate the object of interest in 
the successive frames based on the information about 
the object at the reference and current frames. In our 
algorithm, object tracking is performed by temporal 
tracking of a rectangle around the object at a reference 
frame. A general block diagram of the algorithm is 
shown in Fig. 2. Initially, the user specifies a rectangle 
around the boundary of the object at the reference 
frame. SIFT features are used to correspond the region 
of interests across frames. This feature is used to
localize the search window in the next frame and guide 
the search window through the tracking process. Then, 
we have exploited the feature selection in wavelet 
domain for exactly localized the desired objects in a
video sequence. We generate a feature vector and use 
block matching algorithm in the UWPT domain for 
exactly localized objects in crowded scenes in presence 
of occlusion and noise.

The Undecimated Wavelet Transform (UWT) has 
been used for finding Wavelet Packet (WP) tree. Due to 
time invariant property of Undecimated Wavelet Packet 
Transform (UWPT) an object reposition in image will 
have little impact on the value of wavelet domain 
coefficients. Also it will ease feature selection
procedure, because the sub bands in the decomposition 
tree will have the same size as input image. In general, 
Biorthogonal wavelet bases which are particularly 
useful for object detection [23] could be used for the 
generation of UWPT tree. We can construct a feature 
vector that corresponds to each pixel in the region 
around the object. These FVs can be used to find the 
best matched region in successive frames; that is, pixels 
within region r are used to find the correct location of 
the   object   in   frame t+1.  The  process  of  matching 

region r in  frame t to the corresponding region in 
frame t c 1 is performed through the full search of the 
region in a search window in frame t+1, which is 
adaptively determined by the block matching algorithm 
and Euclidean distances to find the best matched
regions.

In the next step, we use particle filter based texture 
feature cues for tracking. In the particle filter, the
weight of each particle is determined by Bhattacharyya 
coefficient of two corresponding UWPT features.
Applying the proposed algorithm results in improved 
motion tracking which recovers from partial occlusion, 
rotation and scale. 

The entire algorithmic flowchart can be
summarized as follows:

• Define a rectangle on the region of interest in the 
first frame of a video sequence. 

• Extracting SIFT features within this region to
localize the search window in the next frame. 

• Generate an FV for pixels in both region r and
search window.

• Find the best match for r in the search window by 
calculating the minimum sum of the Euclidean 
distances between the FVs of the pixels of search 
regions and FVs of the pixels within region r.

• Use particle filter based texture feature cues for
tracking.

The procedure to search for the best matched
region is the general block-matching algorithm.

In the implementation, the extracting features of the 
object to be tracked are continuously evaluated.
Computational instability may be raised due to lost 
UWPT or SIFT features (e.g., occlusions). In this case, 
the estimated probability distribution in the previous 
frame can be used to dominate locating the object till 
the object appears again.

The feature vector generation: In the first step, the
wavelet packet tree for the desired object in the
reference frame is generated by the UWPT. As
mentioned in the previous section, the UWPT has two 
properties that make it suitable for generating invariant 
and robust features in image processing applications
[24, 25].

It has the shift-invariant property. Consequently,
feature vectors that are based on the wavelet
coefficients in frame t can be found again in frame t+1,
even in the presence of partial occlusion.

All the sub bands in the decomposition tree have 
the same size equal to that of the input frame (no down 
sampling), which simplifies the feature extraction
process (Fig. 3).
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Fig. 2: Block diagram of our proposed algorithm
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Fig. 3: Feature vector selection: (a) a selected basis tree, (b) ordering of the sub band coefficients to extract the 
feature vector

Moreover, UWPT alleviates the problem of sub 
band aliasing associated with the decimated transforms 
such as DWT. The output of this step is an array of 
node index numbers of the UWPT tree.

Scale invariant feature transform: The Scale
Invariant Feature Transform (SIFT) has become a
popular feature extractor for vision-based applications. 
It has been successfully applied to metric localization 
and mapping using stereo vision.

SIFT  [26]  is   a  method  of describing the features 
of an object such that the same object can be recognized 
within variance to scale, rotation and affine
transformations. The method uses Difference of Gaus-
sian (DoG) to locate points on an object that are stable 
in scale space and then describe these feature points by 
the relative gradient orientation of the feature point 
compared with surrounding points within some window 
size. This descript tor is made of 128 elements for each 
feature point using four bins in the x and y directions 
and eight bins for the orientation. In various
applications of SIFT objects are Identified by

comparing the number of points that fall within a
Euclidean distance threshold between two images. This 
is an all-to all comparison and has no restrictions on the 
relative position of points. In this way, if an object is 
severely occluded, it can still be found in an image if 
enough of the available feature points are considered a 
match. This approach works well for computer vision 
where object recognition can have more broad
applications. The SIFT feature descriptor is represented 
as f = {p, s, o, hist} where p is the 2-D position of the 
feature in terms of the image coordinate, s is the feature 
scale, o is the feature vector direction and hist is the
gradient orientation distribution quantized into 128
bins.

SIFT-based object recognition is performed by
matching each key point extracted from the current 
image independently to SIFT model built offline. 

Feature point selection: The first step in selecting
stable points is to find the DoG images. The base image 
is  nominally  smoothed  using  a  Gaussian  function, 
Eq. (1), with σn = 0.5, resulting in I(x,y).
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GgI(x,y). The remaining Gaussian images are created 
using ( )m

1.5 2σ =  (m = 0,1,2,3) resulting in five

Gaussian blurred images (G(x,y,s) (s = 0,…,4)). The 
size of the Gaussian filter is always the closest odd 
number to 3σ. These parameters were selected
empirically and are the same for all images. Then the 
four DoG images are created by subtracting each
Gaussian image from the previous Gaussian image in 
scale:
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For D(x,y,1) and D(x,y,2) the local minima and 
maxima with the highest magnitude are found in each 
region so that every region contains a potential feature 
point unless some portion of that region is occluded.

Feature point stability verification: To solve the
problem of stability, Lowe fit a 3-D Quadratic function 
to the selected points. Using the Taylor Expansion of 
the DoG images D(x,y,s):
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Taking the derivative of this function with respect 
to x and setting it equal to zero, we determine the 
extremum, x , to be 
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To reject points that have low contrast, we
substitute Eq.(4) into Eq.(3) which results in 
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∂
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 
 (5)

If ( )D x  is less than 0.03 (value from Lowe [26]) 

for a given extrema point, that point is rejected. 

Dominant orientation: For each selected extrema
point,  the  dominant  orientation  of  the  gradient  of 
the  points  within  a  window  around  the  feature
point  is  determined  from  the  smoothed  histogram of

orientations. The magnitude and orientation of the
gradient of each point is found and the orientation is 
stored within one of36 bins. For each point within a 
window of W around the feature point, the weighted 
gradient magnitude is added to the bin corresponding to 
that point’s orientation.

Feature description: Knowing the dominant
orientation of each point, a descriptor can be created 
using the relative orientation and magnitude of the
gradient and relative position of each point within a 
window, W, with respect to the feature point and its 
dominant orientation. The feature descriptor has a size 
of 64 bins: four bins for x direction, four bins for y 
direction and four bins for orientation. So, based on the 
normalized, relative orie ntation and position of each 
point in the normalized window with respect to the
feature point.

The search window updating: The change of object 
location requires an efficient and adaptive search
window updating mechanism. The proper search
window location ensures that the object always lies 
within the search area and thus prevents loss of the 
object inside the search window. In this paper we use 
SIFT algorithm for localize the search window.

We Consider a points in the frame n with two 
component i

nx and i
ny . SiftN  is denoted to the number of 

key issues, identified using the above mentioned
method. The key issue s are matched between the frame 
n-1 and frame n. the motion of the key point j from 
frame n-1 to frame n is shown by j

ndx  and j
ndy . The 

estimated position of the object will be given by the 
sum of the position and the average motion estimated 
by sift algorithm:

N
j i

new n n 1
j 1sift

1
x dx x

N −
=

 
= +   

∑ (6)

N
j i

new n n 1
j 1sift

1
y dy y

N −
=

 
= +   

∑ (7)

Sequential monte carlo framework: The aim of
sequential Monte Carlo estimation is to evaluate the 
posterior Probability Density Function (PDF) p(Xk|Zk)
of the state vector Xk given a set Zk = {z1,…,zk} of 
sensor measurements at a time k . The Monte Carlo 
approach relies on a sample-based construction to
represent the state PDF. Multiple particles (samples) of 
the state are generated, each one associated with a 
weight which characterizes the quality of a specific 
particle.   An   estimate of  the  variable   of   interest  is
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obtained by the weighted sum of particles. Two major 
stages can be distinguished: prediction and update.
During the prediction each particle is modified
according to the state model of the region of interest in 
the video frame, including the addition of random noise 
in  order  to  simula te the effect of the noise on the 
state.  In  the  update  stage,  each  particle’s weight is 
re-evaluated based on the new data. A resampling
procedure deals with the elimination of particles that 
have small weights and replication of the particles with 
larger weights.

Particle filtering: We denote by Xt a target state at 
time t, zt  the observation data at time t and Zt  = 
{z1,…,zt} all the observations up to time t. Assuming a 
non-Gaussian state space model, the prior probability 
p(Xt|Zt-1) at time t in a Markov process is defined as:

( ) ( ) ( )t t 1 t t 1 t 1 t 1 t 1p x Z p X X p X Z dx− − − − −= ∫ (10)

where p(Xt|Zt-1) is a state transition distribution and 
p(Xt-1|Zt-1) stands for a posterior probability at time t - 1.
The posterior probability which the tracking system
aims to estimate at each time is defined as: 

( ) ( ) ( )t t t t t t 1p X Z p z X p X Z −∝ (11)

where p(zt|Xt) is the data likelihood at time t. According 
to the particle filtering framework, the posterior p(Xt|Zt)
is approximated by a Dirac measure on a finite set of P
particles { }it i 1 . . . p

X
=

 following a sequential Monte Carlo 

framework [27, 28]. Candidate particles are sampled by 
a proposal transition kernel ( )i i

t t 1 t 1q X X ,z− −
 . The new 

filtering distribution is then approximated by a new 
sample set of particles { }it i 1 . . . p

X
=

  having the importance 

weights { }it i 1...p
w

=
, where

( ) ( )
( )

i i i pt t t t 1i i
t ti i

i 1t t 1 t 1

p z x p x x
w and w 1

q x x ,z

−

=− −

∝ =∑
 


(12)

The sample set { }it i 1 . . . p
X

=
 can then be obtained by 

resampling { }it i 1 . . . p
X

=

  with respect to { }it i 1...p
w

=
. By

default, the Bootstrap filter is chosen as proposal
distribution: ( ) ( )i i i

t 1 t 1 t t 1q X , z p X X− − −=   Hence the weights 

can be computed by evaluating the corresponding data 
likelihood. We denote by D, the overall energy function 
where is energy related to texture cues. Thus, to favor 
candidate regions which FV distribution is similar to 
the reference model at time t.

Texture cue: A measure, d, is defined using the
Bhattacharyya coefficient characterizing the difference 
(distance) between two normalized feature vectors 1t

and 2t .

( ) ( )1 2 1 2d t , t 1 t , t= −ρ (13)

where the Bhattacharyya coefficient, ( )1 2t , tρ  is defined 
as:

( )
m

1 2 1,i 2 ,i
i 1

t , t t t
=

ρ =∑ (14)

The Texture Likelihood can then be defined as:

( ) ( )( )2 2
texture texture x ref tZ x exp d t , t 2ζ α − σ (15)

where σt the standard deviation of the Gaussian texture 
noise is, xt  is the feature vector of the current frame 
and reft  is the reference feature vector.

The larger the coefficient ( )1 2t , tρ  is the more

similar the distributions are. The Bhattacharyya
distance values are within the interval [0,1]. For two 
identical feature vector we obtain d = 0 (ρ = 1)
indicating a perfect match. 

EXPERIMENTAL RESULTS

In this section, we performed several experiments 
to prove the feasibility of the proposed tracking method 
(Fig. 4). These sequences consist of indoors and
outdoors testing environments so that the proposed
scheme can be fully evaluated. 

The experimental results of the proposed tracking 
algorithm have been compared with well-known color 
histogram based tracking algorithms with
Bhattacharyya matching distance. We have used
biorthogonal wavelet bases, which are particularly 
useful for object detection and generation of the UWPT 
tree. In the color histogram-based algorithm
implementation, The RGB color space was taken as 
feature space and it was quantized into 16*16*16 bins. 
The Epanechnikov profile was used for histogram
computations. It must be pointed out that in this
evaluation there is no intension to track multiple
objects. On the contrary, a single object is detected in 
the first frame of each sequence, followed by
continuous tracking to the remaining part of the
sequence. In some sequences, there is more than one 
object in the scene. 
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Fig. 4: Test sequences used in current evaluation

 (a) Reference: frame no. 1 

    (b) UWPT: frame no. 24           UWPT: frame no. 52           UWPT: frame no. 70             UWPT: frame no. 84

     (c) CHB: Frame no. 24            CHB: Frame no. 52                CHB: Frame no. 70        CHB: Frame no. 84
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Fig. 5: Tracking the head of a man coming down the stairs in a crowded metro station. (a) Reference frame, (b) 
UWPT, (c) CHB (d) Objective evaluation: distance between the center of tracked bounding box and the 
expected center, for all methods
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                                                                        (a) Reference: frame no. 1

   (b) UWPT: Frame no. 23         UWPT: Frame no. 39            UWPT: Frame no. 51            UWPT: Frame no. 65 

  (c) CHB: Frame no. 23            CHB: Frame no. 39               CHB: Frame no. 51               CHB: Frame no. 65 
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Fig. 6: Tracking the head of a man coming down the stairs in a crowded metro station in presence of additive 
Gaussian white noise (PSNR =20 dB). (a) Reference frame, (b) UWPT, (c) CHB (d) Objective evaluation: 
distance between the center of tracked bounding box and the expected center, for all methods
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                                                                        (a) Reference: frame no. 11

   (b) UWPT: Frame no. 18          UWPT: Frame no. 29           UWPT: Frame no. 53            UWPT: Frame no. 63 

    (c) CHB: Frame no. 18            CHB: Frame no. 29               CHB: Frame no. 53              CHB: Frame no. 63 
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Fig. 7: Tracking the head of a man coming up the stairs in a crowded metro station. (a) Reference frame, (b) 
UWPT, (c) CHB (d) Objective evaluation: distance between the center of tracked bounding box and the 
expected center, for all methods
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                                                                           Reference: frame no. 1

     b) UWPT: Frame no. 6           UWPT: Frame no. 45            UWPT: Frame no. 77          UWPT: Frame no. 108 

       c) CHB: Frame no. 6              CHB: Frame no. 45              CHB: Frame no. 77               CHB: Frame no. 108 
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Fig. 8: Tracking the a man. (a) Reference frame, (b) UWPT, (c) CHB and (d) Objective evaluation: distance 
between the center of tracked bounding box and the expected center, for all methods
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To evaluate the algorithms in a real-environment
setting, we have applied them to different real-time
video clips of Tehran Metro Stations. These video clips 
show the crowds at different parts of the metro such as 
getting on/of the train and up/down the stairs.
Moreover, they include different conditions in crowded 
scenes such as partial, high and low speed, object
deformation and object rotation. Note the difficulty in 
tracking heads in a crowded scene, as there are several 
nearby similar objects. We have defined a measure for 
objective evaluation of tracking techniques based on the 
Euclidian distance of the center of gravity of the
tracked and actual objects. Here, at the start of tracking, 
a bounding rectangle located at the center of the gravity 
of the desired object is selected. In the following 
frames, the bounding rectangle represents the tracked 
object and its distance with the center of the gravity of 
the actual object is measured.

Figure 5 shows the snapshots of tracked head of a 
man, shown in frame 24, coming down the stairs in a 
crowded metro station. The object is stepping down the 
stairs with a constant speed, small amount of zooming 
and some cross-movements. There is no partial or full 
occlusion of the object in this case, but there are similar 
faces that complicate the tracking process. As the
results show, the object of interest has been
successfully tracked by UWPT despite the presence of 
several similar objects. For color histogram based
tracking method, their Euclidian distance of the center 
of gravity is well above the bounding rectangle size, 
implying that the objects are totally miss-tracked.

Figure 6 shows the result of tracking the sequence 
in the presence of additive white Gaussian noise with a 
peak Signal-to-noise ratio (PSNR) of 20 dB. This type 
of noise is very common with low-light video,
especially in undergrounds. Again, the noisy reference 
frame is frame no. 1 (Fig. 6(a)). 

The presence of noise has degraded the
performance of the color histogram-based algorithms 
tremendously without having any effect on the wavelet-
based methods (Fig. 6(f)). 

Figure 7 shows the result of tracking a person
moving up the stairs and away from the camera in a 
metro station. Frame no. 11 was the reference frame 
(Fig. 7(a)). The target object is stepping up the stairs 
with a constant speed and its movement exhibits a small 
amount of zooming out, some degree of rotation of the 
head and partial occlusion.. In all the sequences, our 
proposed algorithm can successfully track the target 
object even in the presence of object rotation and partial 
occlusion.

CONCLUSION

Many of the existing algorithms for object tracking 
that  are  based  on  spatial  domain  features;  fail in the 

presence of change in appearance or pose or in the 
presence of noise. The tracking framework necessitates 
robust and efficient but accurate methods for
segmentation and matching. To overcome these
problems, in this paper, we have proposed a new
method of object tracking using structural similarity 
index in wavelet transform domain and sift feature, 
which is approximately shift-invariant. Sift features are 
used to correspond the region of interests across frames 
in search window. The sift features are invariant to 
image scaling, translation and rotation and partially 
invariant to illumination changes and affine or 3D
projection. The reference object in the initial frame is 
modeled by a feature vector in terms of the coefficients 
of Undecimated wavelet transform. A similarity
measure based on structural similarity index is used to 
find the object in the current frame. The particle filter 
maintains the estimation of the object positions and it 
makes predictions about its movement. This makes the 
system robust to temporal occlusions of the object. The 
proposed tracking algorithm yields better results even 
in noisy video as shown in the experiments.
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