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Abstract: This paper presents a hybrid iterative scheme based on perturbation and parameterization approaches

for solving optimal control problems governed by integro-differential equations. The control and state

functions are considered as polynomials with unknown coefficients. This converts the problem to nonlinear

optimization problems in any iteration. The numerical examples are proposed for showing good ability of the
P probl y Th 1 pl proposed for sh o good ability of th

given approach in finding approximate solutions for optimal control problems governed by integro-differential

equations.
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INTRODUCTION

Solutions for optimal control problems, except for the
simplest cases, are usually carried out numerically.
Therefore numerical methods and algorithms for selving
optimal control problems have evolved significantly. An
overview of numerical methods for solving optimal control
problems described by ODE and integral equations can be
found in [1].

The current work mtends to combine the methods of
parametrization [ 2-4] and perturbation method [5, 6], both
are successful methods for solving some classes of
optimal control problems
equations, respectively, to provide a new numerical

and differential-integral

scheme for detecting approximate optimal control of
systems governed by a class of integro-differential
equations described by the following mimmization

problem:
T

Minimize J(x,u)= j Fy (L xthul()) dr. 1)
0
Subject to

¢
L= i+ Ikl (5.2,2(5), .., x ), uls)ds +
0 (2)

T
jkz(s,t,x(s),_ A s usds,
0

With nitial and final conditions

x(0) =x" 20 (T = 19, O<ren-1, (3)

Where k,k; € LA([0, T]<[0, T]<R""), r is order of integro-
differential equation and f € C([0, T]|*R=R) . Thereafter,
without loss of generality we suppose that 7 =1.

Required Perturbation Scheme: Excellent idea of
coupling the traditional perturbation method and
homotopy in topology, 1e. homotopy perturbation
method (HPM), which was mtroduced fust by I
Huan He 1n 1999 [7], has been extended and improved by
many scientist and engineers as an applicable tool for
obtaining approximate solution m a wide range of
problems in applied mathematics. Because this method
continuously deforms the difficult problem under the
study into a simple problem which is easier to solve.
Especially, this method has been applied for solving an
extensive class of integral equations and we address only
[5, 6, 8-10].

To illustrate the basic ideas of this method, we
consider the following equation

AWV - flr=0,re, (3
with the boundary conditions
B(v,@) =0, rel, &
dn

Corresponding Author: Akbar H. Borzabadi, Department of Applied Mathematics, Damghan University, Damghan, Iran.
E-mail: borzabadii@du.ac.ir. & akbar.h.borzabadii@gmail.com.



World Appl. Sci. J., 10 (5): 538-543, 2010

Where 4 is a general differential operator, B a boundary
operator, fir) a known analytical functon and I" the
boundary of the domain €.

The operator 4 can, generally speaking, be divided
mto two parts L and &, where L 15 linear, while N 1s
nonlmear operator. Therefore, (3) can be rewritten as
follows

L)+ Nv) - firy = 0. 6)

By the homotopy technique, we construct a

homotopy, V(r, p) = Qx[0,1]-R, which satisfies

HYV, p)= (1 -p(L ) - Ly )+
pA) = fr) =0, pe[0,1], r € Q (6)
Where p 1s an embedding parameter and v, 1s an initial
approximation of (6) which satisfies the boundary
conditions. Obviously, from (6) we have

H(70) =L(F) - L () =0, (7

HI 1) =AW) - f(n) =0. (8
The changing process of p from zero to unity is just
that of F{r, p) from v(¥) to v(r). In topelogy, this 1s called
homotopy. We can first use the embedding parameter as
a small parameter and assume that the solution of (6) can
be written as a power series i
V=y+pl+pV,+.. (9
Setting p =1, the approximate solution (5) will be
concluded as

v=1lim =Fy+ ¥ +Vs +---.
=1

(10)

The combmation of the perturbation and homotopy
method 1s called the homotopy perturbation method
(HPM), which has eliminated the limitations of the
traditional perturbation methods. On the other hand, this
techmique can have full advantage of the traditional
perturbation techniques [11].

Combination of the Approaches: In this section we
the
perturbation and parameterization methods. First we

introduce process of combination homotopy
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consider {e#)} as a basis, which is dense in the space of
C([0.1]). The continuous control function ¢(f) can be
approximated by a finite combination from elements of this
basis [12]. We construct a convex combination as follows:

S(x, py= X"y - y(n)-

t
p(Ikl (5, 0,5(5),. 2™ (s)m(s))ds + (11)
0

il
J'kz (s.,x(s), ., () u(s)ds)= 0, pe[0,1].
0

Our scheme 1n the & iteration considers the control
parametrized form as

rF
u(t):cheJ(l)

=0

(12)

and a power series such as (9), in which X( ¢p,c,....cp), i =
0.1,2,..., are unknown functions that must be determined.
With substituting power series X and (12) in (11) and
equating the terms with identical power of p, we have.

P X =340

¢
P ana, )= pl it Xos, X wuls) dov
0
1
[t xyon xPwaishds f xP g o= (13)
0

I3 1
Pl X9 X0 ot flpter Xy X Ol e
0 0

Note that, to obtain X(¢,¢cp.cn.....ce) i = 0,1,2,..., the
1nitial condition (3) 1s required. The approximate solution
of (13), which are depends on the parameters ¢, j = 0.1,....k
can be obtained setting p = 1, as follows

(14)

x(f,CO,Cl,"',Ck-): limX:X0+X1+X2+~*
-l

Substituting trajectory and control (14) and (12) in (1),
the solution of a constraint optimization problem as
follows
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T i

min J(eg,ep,e) = [ fylt.x(t,cqu00. 0 D e, (DM
(Cu>51>”"3k) 0 J=0

8.1

(15)

x(r)(l,co,cl,'—',ck) = x(r)f, O<pr<n-1

may give rise to approximate optimal trajectory and
control functions of problem (1)-(3). Tt is natural to wonder
when iterations mn the given procedure can be determined.
Assuming JZ as optimal value of (15) in the k th iteration,

a stopping criteria may be considered as follows:

(16)

* *
Jk+1_']kH<£=

for a prescribed small positive number £ that should be
chosen according to the desired accuracy or if the
number of iterations exceeds a predetermined mumber.

Note that, there is only one difficulty in the process
of applying approach which is to obtain the unknown
functions m (13) may be difficult, specially for large » and
we consider it in the process of the approach.

The above results has
algorithm. This algorithm is presented in two stages,

been summarized mn an
mitialization step and main steps.

Tnitialization Step: Choose >0 for the accuracy desired
and a dense basis {e(f)}, for the space C([0,1]) and
parameter p is in interval [(,1]. Setm =k =1 and go to the
main steps.

Main Steps: Step 1. Set u(s) by (12) and go to Step 2.
Step 2. Compute X, (% ¢.c.,....c) by (13) if it is possible and
goto Step 3, otherwise, £ =k + 1 and go Step 1.

Step 3. Compute (t,¢y.¢y,...,c) = arg min f, in (15) by (14)
and go to Step 4.

Step 4. If the stopping criteria (16) holds, stop; Otherwise,
m=m + 1 and go to Step 2.

Numerical Results: In this section, scme numerical
examples are given to show the efficiency of the proposed
algorithm. In all examples, monemial functions {#} have

been considered as dense basis of C([0,1]).

Example 1: Consider the following optimal centrol
problem which is minimization of the functional

1
Jixu)= J'(x(z) — o ) -1,
0

governed by integro-differential equation
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t 1
1) =21+ jszx(s)u(s)ds - J.sz 18 5(5) u(s)ds

0 0

The boundary conditions are
x(0)=1,x(1)=2.

The
functions are x(#) = £ + 1 and u(#) = > respectively.

exact optimal trajectory and control
The computed results of applying the proposed algorithm
in the previous section have been shown in Table 1.
Also the obtained approximate optimal control and
trajectory which has been compared to the exact ones can

be seen in Fig.1.

Example 2: Consider the following optimal control
problem, in which &, =0,

1
minimize J(xu) = [(x(r) - u(ry?ds,
0
Subject to

in=é - %t + | e als)uls)ds,

1
0
with boundary conditions

(0 =1x1)=e.

Here x(¢) = 1, u(f) = &' are the exact optimal trajectory
and control functions, respectively. The results of
applying the given algorithm are presented in Table 2.
Also, one can observe the approximate optimal trajectory
and control functions which is obtained in some iterations
of the given algorithm and compared to the exact

solutions m Fig.2.

Example 3: In this example the following optimal control
problem 1s considered, in which £, = 0,

1
minimize J(x,u) = j(z 8- u(tdt,
0

Subject to

t
y=1- %14 + I!'(szz + sul(s))#(s) ds.
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Table 1: Mumerical results in Example 1 Table 3 Mumerical results in Example 3

k 7 Ji k d Ji

1 3 00262 1 2 00062

2 ] 1113021077 2 2 1.1876x107*
3 3 2.2843x107¢ 3 2 1.1091=10"*
Table 2: Numerical results in Example 2 Table 4 Mumerical results in Example 4

k n Ji k H Ji

1 z 00045 1 3 0.00531

2 2 421471074 2 3 1.6000x107°
3 z 4.0135<10 3 3 1.5950x10-°

Exact and approximate control functions
1 1 1 1

- /
uit) exact - -
as k=1&n=2 jp— -
— k=28n=2 o —
\% e —— —_
N
05! | | | | | | | | |
01 nz2 03 0.4 08 0E 07 08 ng 1
time
Exact and approximate state functions
25 T T T T T T T T T
#(t) exact
2 k=18n=2 -
. k=2&n=2 Il
= -
15 T i
P P P R M - ! ! ! ! !
0.1 02 03 04 05 0.6 0.7 0.8 0.9 1
time
Fig. 1: Exact and approximate optimal controls and trajectories in Example 1.
Exact and approximate contral functions
3 T T T T T T T T T
5g u(t) exact T
k=1&n=2 R
2 k=2&n=2 T
= —
BT e
n e
05 | | | \ | | | | |
0 01 0z 03 04 05 0B 07 08 09 1
time
Exact and approximate state functions
3 T T T T T T T T T
u(t) exact e T
28 k=18n=2 o
= k=28n=2 IR -
2 a2p -
151 - T
1 - ! | ! ! ! ! !
0 01 0z 03 04 05 0B 07 08 09 1

tirme

Fig. 2: Exact and approximate optimal controls and trajectories in Example 2.
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Exact and approximate control functions

15 T T T T T T T T T
uft) exact
1 k=18n=2 1
_ k=2&n=2 T
= 05 I -— |
D l___,———o——'— _ —
D.5| I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 06 0.7 0.3 09 1
time
Exact and approximate state functions
1 T T T T T T T T T -
0e u(t) exact [ e |
k=1&n=2 T
_ 0B k=2&n=2 e ]
* 04 IS i
0.2 T |
e ! ! ! ! ! ! ! !
] 0.1 02 0.3 0.4 0.5 0.6 07 0.8 09 1
tirne
Fig. 3: Exact and approximate optimal controls and trajectories in Example 3.
Exact and approximate control functions
1 5 T T T T T T T
U(t) encact
1 k=12n=3 T
k=28n=3 e~
2 05 e
o_
as I \ \ I I I I I I
0 0.1 0z 03 0.4 05 06 07 0.8 09 1
time
Exact and approximate state functions
1.5 T \ T T T T T T
uit) exact
. k=12r=3 -
_ k=28r=3 I
= e
b _—
n&+- - i
0 el = T T I I I I I I
] 0.1 0z 0.3 0.4 0.4 06 0.7 0.8 09 1
tirne

Fig. 4: Exact and approximate optimal controls and trajectories in Example 4.

The boundary conditions are

x(=0,x(1)=1.

Subject to

The exact optimal trajectory and control functions are

() =t and u(f) = £, respectively. The results of applying

the algoritm have been shown in Table 3. The

comparison of the exact and approximate optimal control
and trajectory may be seen in Fig.3.

Example 4: Consider the following optimal control
problem which is minimization of the functional, in which
k=0,

542

1

0

The boundary conditions are

() = 2—%: + [Sx)ucs)ds

2#(0)=0, £(0)=0.

=1, 3(1)=12.

1
T = [~ + ) -1,
0
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The exact optimal trajectory and control functions are
x(H=ulH =~

The computed results of applying the proposed
algorithm in the previous section have been shown in
Table 4. Also, one can observe the approximate optimal
trajectory and control functions which 1s obtained in some
iterations of the given algorithm and compared to the
exact solutions in Fig.4.

CONCLUSION

In this article, the homotopy perturbation method as
a powerful tool in solving integro-differential equations is
applied for presenting a novel and successful hybrid
iterative scheme to find approximate solutions of optimal
control problems governed by integro-differential
equations. The proposed procedure 1s simple and

show that the

approximate solutions are near to the exact solutions.

effective and the obtamed results
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