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Abstract: In this paper, we propose an efficient fuzzy k-medoids clustering method (will be termed FKM). The

fuzzy c-means clustering algorithm 15 first executed producing the membership grade matrix. The medoids are
then selected as the objects with the highest membership grades m each cluster. Different datasets have been
tested and the results showed that the proposed method is faster than the well-known Partitioning Around
Medoids (PAM) method m all cases. When datasets of lngh dimensionality were applied or when there 15 large
number of data points in the dataset, our proposed method took a significantly less computational time and the

difference in CPU running time 1s more apparent. In terms of the quality of partitioning, the proposed FKM
method and the PAM method perform almost the same with marginal differences that we show to be statistically

insignificance.
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INTRODUCTION

Clustering plays an important role in a wide variety of
fields mcluding data mining, artificial intelligence, pattern
recognition and medical sciences. The goal of clustering
is to discover the natural groups (or clusters) of objects
i datasets and hence to examime similarities and
dissimilarities among objects [1].

Existing clustering methods can be classified into two
main categories: hierarchical and partitioning methods
[2.3]. methods find nested
recursively either in agglomerative or divisive modes.
Partitioning methods attempt to partition the objects in

Hierarchical clusters

the dataset mto & groups or clusters, by optimizing a
criterion function, which is usually defined over all
objects 1n a dataset.

Hierarchical methods in agglomerative mode given #
objects to be clustered begin with » clusters; i.e. put each
object 1n a cluster of its own. In each step, two clusters
are chosen and merged. This process continues until all
objects are clustered into one group. Divisive methods
begin by putting all objects in one cluster. In each step, a
cluster 1s chosen and split up into two clusters. This
process continues until n clusters are produced.

Hierarchical methods are known to suffer from
many points of weakness as reported by Ng and Han
[2], weaknesses include the fact that that they can
m the

been

never unde what was done previously
agglomerative or divisive modes. Tt has also
reported that the clusters produced by a partitioning
method are of higher quality than the clusters produced
by a hierarchical method [1, 2].

Therefore, developing partitioning methods has
been one of the main focuses of cluster analysis
research and many partitomng methods have been
developed based on k-means, fuzzy clustering
methods or k-medoids. These methods attempt to
find a “good” partitiomng m the sense that objects in
the same cluster are close or related to each other, while
objects of different clusters are far or different from each
other [1].

The k-means algorithm starts with a random initial
partition and keeps reassigning the objects to clusters
based on the similarity between the objects and the
cluster centers until there i1s no reassignment of any
object from one cluster to another [1, 4].

Unlike the k-means partition algonthm, m which each
object m the dataset can belong to only one cluster,
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fuzzy clustering methods attempt to generate a partition
i which each object in the dataset can belong to every
cluster with a certain membership degree, using a
membership function [5].

K-medoid methods
methods that partition a dataset of n objects mto & groups

are partitioning clustering
or clusters. K objects are selected, which are centrally
in the
constructed clusters, called medoids and the clustering
method is called k-medoid method.

Various k-medoids methods have been published
[6]. Most of these algorithms are very time-consuming [7].

located (or optimal representative objects)

In addition, they have deficiencies in handling high
dimensional datasets [8].

The cluster centers produced by the k-means
algorithm or fuzzy clustering methods are just
representatives of the clusters. These centers are placed
anywhere in the space, even where 1t does not make sense
(for examnple, to place a hospital in the middle of a street),
while the k-medoids models require that medoids are
restricted to a subset of the original dataset. For this
reason k-medoids method was chosen for improvement in
this paper

In this paper, we propose a new fast fuzzy k-medoids
method that can handle high dimensional datasets
efficiently. The proposed method will be compared to the
Partitioning Around Medoids (PAM) method [9, 10], as
one of the most widely used k-medoids methods. For its
PAM 1s comsidered as a benchmarked k-

medoids clustering method by many researchers [6, 8-10].

dccuracy,

The results produced by our proposed method will be
compared to those produced by the PAM method in terms
of time efficiency and accuracy,
benchmarked datasets.

using  different

Related Work: PAM is one of the most effective and
widely used k-medoids methods [6, 8-10]. PAM starts by
selecting an mnitial set of medoids and iteratively replaces
each one of the selected medoids by one of the non-
selected medoids m the dataset as long as the sum of
dissimilarities between the objects and their closest
medoids 1s mmproved. The process 1s repeated until the
criterion function converges.

The major drawback of the PAM algorithm is that the
time required for partitioning the data is very expensive
and can become unmanageable for large datasets [10, 11].
With n objects and k clusters, the time complexity of the
PAM method is estimated as O¢k(n - k)°) [12].
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Other partitioning methods based on PAM were
published, such as Clustering Large Applications
(CLARA) [10] and Clustering Large Applications based
on Randomized Search (CLARANS) [1].

CLARA creates multiple samples (of 40 + 2k) objects
randomly from the entire dataset and then applies PAM to
each of the samples. The CLARA method, however,
requires multiple scans of the entire dataset, which ends
up in an extra CPU time. The time complexity of each
iteration of the algorithm is estimated as Oks2 + k{n-k)),
where s is the size of the sample [13]. Tt has been reported
that the produced clustering solution may not be as good
as the solution produced by the whole set [14].

The CLARANS method stems from the work done on
PAM and CLARA. Itrelies on a randomized search of a
graph to find the medoids which represent the clusters.
However, it has been reported that the CLARANS method
has a high time complexity, estimated as O(n’) for each
iteration [7, 13]. In addition, it has been reported mn [8] that
the deficiency of the method is that it does not function
well when high dimensional data is applied.

It should be noted that PAM, CLARA and
CLARANS generate crisp clusters. When the clusters are
not well defined (i.e. when they overlap) fuzzy clusters are
desired [15].

In this paper, we propose a Fuzzy k-Medoid (FKM)
method based on the Fuzzy c-Means (FCM) clustering
algorithm [16, 17]. The FKM method produces quality
results similar to the standard PAM method with less tume
complexity when applied to two dimensional datasets.
More noticeable reduction in time complexity is achieved
using the FKM method when applied to datasets with
high dimensionality in comparison to the time complexity
of the PAM method.

Proposed Method: Our proposed FKM method is based
onthe FCM clustering algorithm [16, 17]. In the proposed
method, the FCM algorithm 1s executed first, producing
the membership degree matrix. Medoids are then selected
as the objects with the highest membership grade values
in each cluster.

The mam merit of the FCM clustering algorithm 18
that its speed of convergence 1s fast and lLttle storage
space is needed [18, 19)]. The time complexity of the FCM
algorithm is estimated as ((nk”) for each iteration [12],
where # is the number of objects and & is the number of
fuzzy clusters. Comparing between the time complexity of
the FCM and the PAM method, a significant increase in
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the time efficiency can be achieved by using FCM
especlally when applied to high dimensicnal datasets. The
advantages of the FCM mclude a straightforward
implementation, fairly robust behavior, applicability to
multidimensional data and the ability to model uncertainty
within the data [1, 20].

FCM partitions a collection of # data points x, i = I,
.., #into k fuzzy clusters and finds a cluster center in
each cluster such that the objective function of the
dissimilarity measure is minimized. FCM employs fuzzy
partitioning such that a given data point can belong to
several clusters with the degree of belongingness
specified by membership grades between 0 and I. The
membership matrix L/ 1s allowed to have elements with
values between 0 and I and the summation of degrees of
belongingness for a dataset should always be equal fo I,
as shown 1n the constraint:

Zuy:Lv‘i:L“wn (1)

The goal of the FCM is to find the fuzzy cluster centers
(centroids) and the fuzzy membership grades minimizing
the following objective function:
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The FCM algorithm determines the cluster centers ¢, and
the membership matrix {/ using the following steps [21]:

Step [1]: Iitialize the membership matrix 7 with random
between 0 and 1 such that the
constraints m equation (1) are satisfied.

values

Step [2]: Calculate k fuzzy cluster centers ¢;,,j =1, .., k,
using equation (3).

Step [3]: Compute the objective function according to
equation (2). Stop if either it is below a certain
tolerance wvalue or its improvement over
previous iteration is below a certain threshold, .

Step [4]: Compute a new U using equation (4). Go to

step 2.

The cluster centers (centroids) produced by the FCM
are Just representatives of the clusters. These centers are
placed anywhere in the space, even where it does not
make sense (for example, to place a school on a street),
while the k-medoids models require that medoids are
restricted to a subset of the original set. Therefore, our
aim is to find “real” objects (medoids) among the dataset
to represent each cluster. This can be achieved by
exploiting the values of the IV membership grade matrix
produced by the FCM algorithm. These values represent
the membership grade between each object and different
clusters. The higher the membership grade s, the stronger
an object belongs (relates) to its cluster as the most
centrally located object in the cluster and hence the most
likely to be the medoid of the cluster.

To show how the proposed FKM method works, we
will use the dataset presented by Chianga and Yin [22] as
an example. The dataset consists of 20 data points, with
two dimensions, as shown in Figure 1. Tt is clear that the
dataset contains two “natural” clusters.

Applying the FCM algorithm to the points of the
dataset produces membership grade matrix shown in
Table 1.

The table shows the point’s ID (ID) n the first
column The second column shows the membership
grades (U)) for the data points regarding cluster 1 and the
third column shows the membership grades (/) for the
data pomts regarding cluster 2.

The table shows that the point with the highest
(maximum) value in the second column is the point with
ID = 5 (bold). The point with the highest value in the
third column is the point with TD = 15 (bold). Hence,
our two medoids are the points with ID =5 and ID = 15.
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Fig. 1: Data set presentedin [22]

Table 1. The membership grades for the data set shown in Figure 1

ID Ul Uz

1 0.93812 006183
Z 0.93821 0.06179
3 0.98581 001419
4 0.98583 n.01417
5 0.99993 6.56E-05
fi 0.98323 0.01677
7 0.98326 0.01674
8 0.87398 0.12602
9 0.87434 012568
10 0.25183 074817
11 0.25407 0.74593
12 0.07214 0.92786
13 0.07318 0.92682
14 0.01696 0.98304
15 0.00861 0.99139
16 0.00941 0.99059
17 0.04502 0.95491
18 0.04648 0.95352
19 0.08597 0.91403
20 0.08640 0.91360

RESULTS AND DISCUSSION

In order to measure the performance of our proposed
FKM method, we have compared our results to the results
obtained from applying the PAM method when different
datasets are applied. All of the experiments have been
implemented on Pentium IV / 1GH personal computers,
using the MATLAB software package (2007a, The
MathWorks, Inc. Natick, MA, USA).

As discussed in [7], there iz no universally agreed
upon definition of the quality of the clustering results.
The majority of researchers describe a cluster by
considering the internal homogeneity and the external
separation; i.e. objects in the same cluster are related to
each other, while objects of different clusters are far or
different from each other [1].

Several techniques have been proposed for
measuring clustering quality results. One technique iz the
Average Silhouette width, another technique is the uze of
the Average Distance (AD) between each object and its
nearest medoid. This technique has been proposed by
Kaufman and Rousseeuw [10] and will be used in this
research. The technique allows two solutions to be
compared for a given dataset: the smaller the value of the
AD ig, the better the solution is.

We will start our experimentations with the Ruspini
dataszet obtained from [10]. This dataset has 75 objects
{data points) and two dimensions as shown in Figure 2.

Ruspini Dataset-75 data point
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Fig. 2: Ruspini data points
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Table 2: The AD wvalues produced by the PAM and the FKM methods
when the Ruspini dataset is applied, K=2, 4, 6, 8 and 10.

K PAM FKM Difference t-value

2 31.94 31.94 0.00 NA

4 11.48 11.49 0.01 0.0006

6 9.53 9.68 015 0.0052

8 8.00 8.25 0.25 0.0344

10 46.84 7.34 0.50 0.0221
Different number of clusters are attempted,

specifically k=2, 4, 6, 8 and 10. Figure 3 shows the resulted
medoids from the PAM method and from the proposed
FKM method. The resulted medoids are marked m filled
circles.

Table 2 shows the AD values produced by the PAM
method and the proposed FKM method. The first column
shows the number of medoids (clusters), &, the second
column represents the AD values obtained from applying
the PAM method and the third column represents the AD
values obtained from the FKM method. The fourth
column computes the differences between the AD values
obtained from the FKM methods minus the AD values
PAM method. The fifth column
computes the t-values to test if the differences are
statistically sigmficant [23]. The degree of freedom 1s set
to 74 as there are 75 data points.

The results of Table 2 show that PAM gave better
results in most cases, although the FKM method gave the
same results as PAM when k = 2. It can be noticed from
Table 2 that the differences in the results obtained from
the PAM and the FKM methods are marginal.
fifth column of
Table 2, it can be concluded that there is no significant
differences between the values produced by the PAM
method and the values produced by the FKM method at
the 1% significance level (99% confidence level) for all
values of k as all the t-values are included in the mterval
[-2.5758, 2.5758] which confirms the effectiveness of the
proposed method in finding the best medoids [23].

When K=2, both methods performed the same as the
AD values from both methods were the same. This 1s
because both methods found the same medoids (Points 17
and 42) with coordinates (30, 52) and (60, 136),
respectively. When K=4, the proposed FKM method has
very similar performance to that of PAM. The difference
m AD is 0.01 with t-value of 0.0006 which 15 not
statistically significant at the 99% confidence level [23].

Although the PAM method achieved slightly better
results than the FKM method with k values greater than
4, looking at the distribution of the data points shown in

obtained from the

From the t-values shown m the
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Figure 2, it can be noticed that the data points are
distributed ideally mto four clusters, which indicates that
using more clusters is not advantageous in both methods.
The rest of the results in the table are self-explanatory.

Figure 4 shows the box plots of differences between the
data points of the Ruspini dataset and the corresponding
medoids produced using the PAM method and the
proposed FKM method [24].

When k=2, the differences achieved by the PAM and
the FKM method are the same as shown in Figure 4 (a)
and (b), respectively. This 13 because both methods found
the same medoids. From Figure 4 (c) it can be noticed that
when PAM method 1s used with k=4, 25% of the
differences (the first quartile) are below 7.05. The lower
two quartiles (median value) have maximum difference of
10.44. The maximum difference for the third quartile 1s 14.2.
The maximum difference for the majority of points is 24.04
with few outliers of higher differences. With the same
number of cluster k=4, when FKM method 1s used as
shown in Figure 4 (d), points of the first quartile are below
7.21. The median has the value of 10.3. The maximum
difference for the third quartile is 14.2. The maximum
difference 13 24.04 with more outliers than in Figure 4 (c)
which justifies the marginal difference between the two
methods.

When k=6 and PAM method 1s used mn Figure 4 (e),
the first quartile data points have differences below 5.099.
The median has the value of 9.22. The maximum difference
for the third quartile is 13.26. The maximum difference for
the majority of pomts 1s 21.47. When FKM 1s used in
Figure 4 (f), 25% of the differences (the first quartile) are
below 5.873. The median has the value of 9.22. The
maximum difference for the third quartile 1s 12.53. The
maximum difference for the majority of points is 22.14.
Also, mm this case more outliers exist than the case of
PAM which justifies the differences between the two
methods. Similar results and justifications exist in Figure
4 (g), (h), (1) and () with PAM (K=8), FKM (K=8), PAM
(K=10) and FKM (K=10), respectively.

Table 3 shows the CPU run time in milliseconds for
both methods, when a different number of clusters, &, 1s
used. The table shows that i all cases the FKM method
1s very efficient in terms of the CPU time. The last column
shows that in all cases, the improvement (speedup) which
1s achieved by the FKM method 1s sigmficant.

In the rest of this section, we will investigate the
effectiveness of the FKM method when high dimensional
datasets are used. High dimensional clustering is recuired
for many applications including Geographic Information
Systems (GIS) and gene expression data applications.
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Fig. 4: Box plot of differences between the data points of the Ruspini datasets and the medoids produced using PAM

and FKM methods. K=2, 4,6, 8§ and 10

Table 3 CPU run time in milliseconds for Ruspin data

K PANM FEM Improvement
2 13 f 54%
4 32 146 50%
] 47 3l 4%
3 93 45 52%
1 140 78 4%

Table 5. The AD values produced by the PAM and the FKM methods for
different high dimensional datasets

Dataset PAM FEM Difference t-value

Inis 6.54 6.63 0.09 0.0051

Wood 0.1348 0.134% 1] MA

Bupa 29.2056 29.2056 1] MA

Teast 0.2174 0.2216 0.0042 -0.0029

Table 4: Summary of the datasets obtaned from the Umwversity of
Caifomia, Irvine repository of machine learning databases: # 1sthe
number of objects (instances), & is the dimensions of the set and
k15 the number of classes (clusters) [25].

Data set » d k
Irig 150 4 3
Wood 20 6 2
Bupa 345 1] 2
Veast 1484 3 3

It has been reported in [&] that most of the existing k-
medoids methods discussed above (i.e. PAM, CLARA
and CLARANS) do not function well when high
dimensional data iz applied.

To test the effectiveness of the FKM method when
high dimensional datasets are applied, different
benchmarked datasets whose true classes (clusters) are
known have been used. These datasets are obtained from
the University of California, Irvine repository of machine
learning databases [25] and are summarized in Table 4.
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Table 5 shows the AD values produced by the PAM
method and the proposed FKM method. The first column
shows the name of the dataset, the second column
represents the AD values obtained from applying the
PAM method and the third column represents the AD
values obtained from the FKM method The fourth
column computes the differences between the AD values
obtained from the FKM methods minus the AD values
obtained from the PAM method. The fifth column
computes the t-values to test if the differences are
statistically significant. The degree of freedom in each
cage iz gset to the number of data points in that dataset
minug 1 [23].

The results of Table 5 show that PAM gave
slightly better results than FKM method for Iris
although the difference
ingignificant  at the 1% significance level
confidence level) with t-value

dataset is statistically

(99%
0.0051. The average
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Fig. 5: Box plot of differences between data objects of the Yeast dataset and the medoids produced using the PAM and

the FKM methods when K=3.

difference between the distance achieved using PAM and
FKM is 0.09 which indicates that similar quality results are
achieved using the two methods. The main advantage of
the FKM method is the fast execution time as shown in
Table 6.

For the Wood and Bupa datasets, both methods
achieved the same performance as the same mediods are
determined using the two methods. The FKM is much
more efficient in terms of CPU time as illustrated in
Table 6.

For the Yeast dataset, very close results were
achieved with difference in AD = 0.0042 with t-value
equals -0.0029 which indicates the differences are
statistically insignificant.

Figures 5 (a) and (b) show the box plots of
differences between the data points of the Yeast dataset
and the corresponding medoids produced using the PAM
method and the proposed FKM method, respectively [24].

The results achieved by PAM and FKM methods are
almost the same as shown in Figure 5 (a) and (b),
respectively. From Figure 5 (a) it can be noticed that when
PAM method is used with k=3, 25% of the differences for
the first quartile of the data points are below 0.1421. The
median difference has the value of 0.1913. The maximum
difference for the third quartile is 0.2546. The maximum
difference for the majority of points is 0.4241 with few
outliers of higher differences.

With the same number of cluster k=3, when
FKM method is used as shown in Figure 5 (b), the
differences of the first quartile of data points are below
0.1415. The median difference has the value of 0.1947.
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Table 6: CPU run time in milliseconds for different high dimensional

datasets
Data set PAM FKM Improvement
Iris 172 94 45%
Wood 94 16 83%
Bupa 562 78 86%
Yeast 33390 1250 96%
Table 7. The AD values produced by the PAM and the FKM methods
when applied on the Bupa dataset
K PAM FKM Difference t-value
2 29.2056 29.2056 0 NA
4 23.6969 24.1014 0.4045 -0.0012
6 20.6599 20.9554 0.2955 0.0004
8 18.9117 19.2660 0.3543 -0.0048
10 17.5809 18.2879 0.7070 0.0058

The maximum difference for the third quartile is 0.2666.
The maximum difference is 0.4544 with more outliers than
in Figure 5 (b) which justifies the differences between the
two methods. Also, the range of the fourth quartile is
wider than the range of the fourth quartile of the PAM
method which indicates that few data points affect the
average distance; nevertheless, the difference in the
results obtained from the two methods is statistically
insignificant. More importantly, the results obtained from
the FKM method is more efficient than the results
obtained from the PAM method in terms of the CPU time.

Table 6 shows the results in terms of the CPU
running time for both the FKM and PAM methods. The
table shows that in all cases, the results of the proposed
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method were better than those of the PAM method in
terms of the CPU time. This efficiency mcreases
monotonically with the increase in the size of the dataset;
1t reaches the maximum mmprovement of 96% for the Yeast
dataset which has 1484 data objects.

Finally, we will test our proposed method agamst
PAM when a number of clusters are applied on high
dimensional datasets. We have chosen the Bupa dataset
since its size 1s moderate. Table 7 shows the result.

As Table 7 shows, the results obtained from the
FKM method 1s similar to the results obtamned from the
PAM method as in all cases the
statistically insignificant at the 99% confidence level. The

differences are

main advantage 1s that the proposed FKM method 1s
much faster than the PAM method.

CONCLUSIONS

Partitiomng clustering 1s an important part of cluster
analysis. In this paper, we have proposed an efficient
fuzzy partitioning clustering method called Fuzzy k-
Medoids method (FKM), based on the FCM algorithm.
The medoids are selected as the objects with the highest
membership grade in each cluster.

To test the performance of the proposed method,
different benchmarked datasets obtained from the
University of California, Trvine repository of machine
learming databases have been used with different number
of clusters and different dimensionality.

In terms of the quality of the results, the proposed
FKM method performs sinilarly to the benchmarked PAM
method with no statistical significance between the
performances of the two methods.

In terms of the CPUJ running time, the proposed FKIM
method outperforms the PAM method in all cases, this
CPU efficiency is more apparent when datasets of high
dimensional or datasets with large number of data objects
are applied. This makes the proposed method a good
choice for solving the k-medoids problem, particularly
when high dimensional data sets are mvolved in
applications such as Geographic Information Systems
(GIS) and gene expression

Enhancing the quality of the results 13 left to future
work.
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