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Abstract: In this paper, we apply modified vamational iteration method (VIMAP) to find travelling wave
solutions of Whitham-Broer-Kaup (WBK) equations. The proposed modification 1s made by introducing
Adomian’s polynomials in the correction functional of the VIM. The use of Lagrange multiplier coupled with
Adomian’s polynomials 1s the clear advantage of this techmique over the traditional decomposition method.
Numerical results explicitly reveal the reliability of proposed VIMAP.
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INTRODUCTION

The rapid growth of nonlinear sciences [1-26]
witnesses a reasnable number of new and modified
versions of some traditional algorithms. He [9-13]
developed the variational iteration (VIM) method which 1s
highly suitable for the problems arising in nonlinear
sciences. G. Adomian [1] proposed decomposition
method which was appropriatly modied by Wazwaz
[24-26]. In these methods the solution is given in an
infinite series usually converging to an accurate solution,
see [2-13, 15-17, 19-23] and the references therein. The
basic motivation of this work 1s to apply the variational
iteration method (VIM) coupled with Adomian’s
polynomials (VIMAP) to find travelling wave solutions
of Whitham-Broer-Kaup (WBK) equations [22] which
arise quite frequently in mathematical physics, nonlinear
sclences and 13 of the form

w2+, v+ P, =0 (1)

v+ (uv), +au, — Py, =0,
Where the field of horizontal velocity is
represented by w= u(xf), v = wix,f) 1s the height that

deviate from equilibrium position of liquid and o,f3
are constants which represent different diffusion power.

This 1dea has been used first by Abbasbandy [2, 3] to
solve quadratic Riccati differential equation and Klein-
Gordon equation and subsequently by Noor and
Mohyud-Din [16, 17, 19] for finding solutions of a large
number of singular and nensingular initial and boundary
value problems. In this method the correction functional
is developed [1, 2, 16, 17, 19] and the Lagrange multipliers
are calculated optimally via variational theory. The
Adomian’s polynomials for the nonlinear terms are
introduced in the correction functional and can be
calculated according to the specific algorithms set
in [24-26]. Tt is shown that the proposed VIMAP
provides the solution in a rapid convergent series
with easily computable components. Numerical results
explicitly reveal the complete reliability of the proposed
VIMAP.

Variational Iteration Method (VIM): To illustrate the
basic concept of the technique, we consider the following
general differential equation

Lu + Nu = g(x), 1)

Where L is a linear operator, N a nonlinear operator
and g(x) 1s the forcing term. According to variational
iteration method [2-13, 15-17, 19-23], we can construct a
correct functional as follows
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b1 () = 1,0+ [ALt, () + N i (5) - gshyds, ()
0

Where A is a Lagrange multiplier [2-13,15-17,19-23],
which
iteration method The subscripts n denote the nth

can be identified optimally via variational

approximation, 7, 1s considered as a restricted variation.
le. 5&-”:0;(2) 15 called a correction functional. The
solution of the linear problems can be solved in a single
iteration step due to the exact identification of the
Lagrange multiplier. The principles of variational iteration
method and its applicability for various kinds of
differential equations are given in [2-13, 15-17,19-23].
In this method, it is required first to determine the
Lagrange A optimally. The
approximation #,,,, # > 0 of the solution u will be readily

multiplier successive
obtained upon using the determined Lagrange multiplier
and any selective function #,, consequently, the solution

1s given by u= lim ,.
—p0

Adomian’s Decomposition Method (ADM)

Consider the differential equation [24-26]

Lu+Ru+Nu=g¢g (3)

Where L. is the highest-order derivative which is
assumed to be mvertible, R 1s a linear differential operator
of order lesser order than L, Nu represents the nonlinear
terms and g is the source term. Applying the inverse
operator L.7' to both sides of (3) and using the given
conditicns, we obtain

u=f- L7 (Ru) - L7 (Nu),

Where the function f represents the terms arising
from mtegrating the source term g and by using the given
conditions. Adomian’s decomposition method [33-35]
defines the solution u(x) by the series

u(x)= ) u, (),

n=0

Where the components w,x) are usually determined
recurrently by using the relation

y=f
U =L (R — L7 (Nu), k2 0.
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The nonlinear operator F{z) can be decomposed into
an mfimte series of polynomials given by

F-3 4,

n=0

Where A4, are the so-called Adomian’s polynomials
that can be generated for various classes of nonlinearities
according to the specific algorithm developed in [33-35]
which yields

]F
i

An—&]{ (au)| .

For further details the

decomposition method, see [33-35] and the references

n

d}l
dA®

n=0,12---

about Adomian’s

therein.

Variational Tteration Method Using Adomian’s

Polynomials (VIMAP): To illustrate the basic concept of

the proposed VIMAP, we consider the following general
differential equation (4)

Lu + Nu = g(x), (4

Where L is a linear operator, N a nonlinear operator

and g(x) 1s the forcing term. According to variational

iteration method [1-3, 5-11, 16-30], we can construct a
correct functional as follows

1) =1, () + [AlL, ()4 Ny () glspds, )
0

Where A is a Lagrange multiplier [5-11] , which can be
identified optimally via variational iteration method.
15

The subscripts n denote the nth approximation, ;
i

considered as a restricted variation. i.e. ity = 0; (5) 18

called as a correct functional. We define the solution #(x)
by the series

u)=Y u(x),
=0
and the nonlinear term

[+4]
N(H):ZAH.(H(): Uy, My, M),

n=0
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Where A4, are the so-called Adomian’s polynomials
and can be generated for all type of nonlinearities
according to the algorithm developed m [33-35] which
yields the following

gl

1 () = (x>+juLu -3 4 - el &

d!’l
ar

i3

}F(“(l))xm

Hence, we obtain

rn=0
(6)
Which is the variational iteration method
using Adomian’s polynomials (VIMAP) and 1s
formulated by the elegant coupling of vanational

iteration method and the so-called Adomian’s

polynomials.

Solution Procedure: Consider Whitham-Broer-Kaup
(WBK) equation (1) with initial conditions

u(x,0)= A — 2Bk coth(kE), Wx,0)=—2B(B+ k% csch(kL),

)

B= ’OH—,BZ £ =x +x, and x,, k.4 are arbitrary

constants. Applying variational iteration method (VIM)

Where

on (1, 5). The correction functional 15 given by

t
) = A mcom@f)*jl(s)[% +ilyy [zf +% . e 6::31]

o

t
Vm+1(xsf)=—23(B+ﬁ)kzcscﬁ2(k€)+jl@)[a:+(ﬁn‘7n) I~

o
et
0
Making the correction functional stationary, the Lagrange
multipliers are identifird as A(s) = -1 consequently

tiy 178 = A— 2Bk coth(kE)— j{-%—un
0
t

) 28G5 A1) [ [%H )+t
ar
0

3
2 "2” s,
ar

Applying variational itertaion method using Adomian’s
polynomials (VIMAP), we get
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o o

o0
Y &
g1 = A= 25 ol - j —+Z&+Z§ ,82?”” %,
n=0 n=0 n=0
2 2 Hn iy Vi
== 2B(B+ ) k° sk G Zn 5 e} s,
Ve =~ 2B(B+ B i e <¢>_[ %+; W,;; 5 ﬁgﬂ: >

Where A4, and B, are the Adomian’s polynomials
which can be evaluated by using specific algorithm
developed in []. Consequently, following approximants are
obtained

ug(x,1) = A— 2Bk coth(k&),
vo = —2B(B + B)k” csch®(kE),

2wy (5,63 = A — 2Bk coth(38) - 254> At esch > (k(x +x0 ),

W =—2B(B+ P)E csch? (kE)— 2B(B + PYk2H- A+ 2Bk coth(kE)) esch? (1)

—4B(a+ BB+ )i (2 + cosh(Zir(x + xglesch? (48),

2
w2 :363—;@115 Sk — BB B2 A P A% ok
ok +488E2 4 4B~ 5 A AZ cotBhE) - 55+ 658k — 65— 6BIA)ShED

5%+ 25Bk— 25— 2B s ),
22
va= E"Tf et B 42 pkE - somepit _soepptt - soapPit _atarastiia

1Pk A- 2482203522 32 _neopt sa1emp Bt s a1s B A et
R A— 1692 A 4542 A D100k~ B +4B2BKE 1eep 16585t 11687t
ek o)+ 25 LA Pk A BAZ + A coshlh)— (2 41125285 4112555
FEEA+ BEHA-+ S0 Asinh kS — (e B + 1652PID +165828

452 HA— ABIA+ B A ),

Hence, the closed form solutions are given as

u(x,f) = A — 2Bk coth (k(£ - AD), (6)

wWx,t) = - 2B(B + P& csck’ (kE - D), (N

Where B- {O:Jrﬁz and £ = x + x, and x,, k, A are

arbitrary constants. As a special case, if a =1 and =0,
WBK equations can be reduced to the modified
Boussinesq (MB) equations.We shall second consider
the initial conditions of the MB equations

1u(x,0) = A —2kcoth(kE),  w(x,0)

-2/ csch(KE), ()

Where £ = x + x, being arbitrary constant. Procedding as
before, we obtain exact selution as follows



World Appl. Sci. J, 10 (2): 147-153, 2010

Table 5.1: The numerical results for ¢,(x,) and ¢,(x.f) in comparison with the exact solution for z#(x,#) and v(x,7) when £=0.1, A =0.005, a=1, =0
and x; = 10, for the approximate solution of the WBK equation

1% 0.1 0.2 03 0.4 0.5

lu - ¢l

0.1 1.04892E-04 4.25408E-04 9.71992E-1 1.75596E-03 2.79519E-03

0.3 9.64474E-05 3.91098E-04 8.93309E-(4 1.61430E-03 2.56714E-03

0.5 8.88312E-05 3.60161E-04 8.22452E-1 1.48578E-03 2.36184E-03

v = gl

0.1 6.41419E-03 1.33181E-03 2.07641E-02 2.88100E-02 3.75193E-02

0.3 5.99783E-03 1.24441E-02 1.93852E-02 2.68724E-02 3.4961 TE-02

0.5 5.61507E-03 1.16416E-02 1.81209E-02 2.50985E-02 3.26239E-02

Table 5.2: The numerical results for ¢,(x.f) and @,(x,£) in comparison with the analytical solution for u(x.f) and v(x,f) when k= 0.1, 1 =0.005, a=10,

B=0.5 and x; = 10, for the approximate solution of the MB equation

1, 0.1 0.2 0.3 0.4 0.5
I - &l

0.1 8.16297E-07 3.26243E-06 7.33445E-06 1.30286E-05 2.03415E-05
0.3 7.64245E-07 3.05458E-06 6.86758E-06 1.22000F-05 1.90489F-05
0.5 7.16083E-07 2.86226E-06 6.43557E-06 1.14333E-05 1.78528E-05
v = ol

0.1 5.88676E-05 1.18213F-04 1.78041F-04 2.38356F-04 2.99162E-04
0.3 5.56914E-05 1.11833E-04 1.68429E-04 2.25483E-04 2.83001E-04
0.5 5.27169E-05 1.05858F-04 1.59428F-04 2.13430F-04 2.67868E-04

Table 5.3: The numerical results for ¢,(x,f) and ,(x.f) in comparison with the analytical solution for u(x.f) and v(x,f) when £ =0.1, A =10.005, a=10,

£=0.5 and x, =10, for the approximate solution of the ALW equation

1%, 0.1 0.2 0.3 0.4 0.5
- &l

0.1 8.02989E-06 3.23228E-05 7.32051E-05 1.31032E-04 2.06186E-04
0.3 7.38281F-06 2.97172E-05 6.73006E-05 1.20455F-04 1.89528F-04
0.5 6.79923E-06 2.73673E-05 6.19760F-05 1.10919F-04 1.74510F-04
v = ol

0.1 4.81902E-04 9. 76644E-04 1.48482E-03 2.00705E-03 2.54396E-03
0.3 4.50818F-04 9.13502F-04 1.38858F-03 1.87661F-03 23781 5E-03
0.5 4.22221E-04 8.55426E-04 1.30009E-03 1.75670E-03 2.22578E-03

u(x,f) = A — 2kcoth(kE- A5, v(x,t) = -2 csch*(kE- Ab),

Where k,4 are constants to be determined and x, is
an arbitrary constant. In the last example, if @ = 0 and
B 1/2, WBK equations can be reduced to the
approximate long wave (ALW) equation m shallow
water. We can compute the ALW equation with the mitial
conditions

1(x,0) = A — kcoth(kf), v(x,0) =—i csch® (k),

Where k is constant to be determined and £ = x + x,
Procedding as before, we obtain exact solution as follows

150

u (x,5) = A -k coth (k& - 2D, v(x,8) = -2k csc B (ki - AD)

Where kA are constants to be
determined and ¢ = x + x, x, 18 an
arbitrary constant. In order to verify numerically
whether the  proposed  methodology  lead to
higher accuracy, we  evaluate the numerical
solutions  using the n-term  approximation.
Tables 5.1-5.3 show the difference of analytical

solution and numerical solution of the absolute error.
We achieved a very good approximation with the actual
solution of the equations by using 5 terms only of the
proposed MVIM.
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Fig. 1: The surface shows the solution u(x, ¢) when
k=0.1, 1=0.005, a=1, f=0and x,= 10 (a) exact solution (b) approximate solution
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Fig. 2: The surface shows the solution v(x, ) when
k=0.1, 1=0.005, a=1, f=0and x,= 10 (a) exact solution (b) approximate solution

Fig. 3: The surface shows the solution u(x, ¢) when
k=0.1, A=0.005, a=0, f=0.5and x,=20

Fig. 4: The surface shows the solution v(x, ) when
k=0.1, 1=0.005, a=0, =0.5and x,=20 (a) exact solution (b) approximate solution
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CONCLUSION

In this paper, we applied variational iteration method

using Adomian’s polynomials (VIMAP) to find travelling
wave solutions of Whitham-Broer-Kaup (WBK) equation.
The proposed modification i3 made by introducing

Adomian’s polynomials in the correction functional of the

VIM. Numerical results explicitly reveal the complet
reliability of VIMAP.
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