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INTRODUCTION
In this paper we consider the system

oW 1
T:Ajs(zlssz2s="'=zns)(p(W) s, j=L2,--.n L

Extension of some properties of analytic functions on
several complex variables during the past century 1s the
main goal for many researchers. Such as the TN.Vekua [6]
has studied the system.

%’: = A{z W + Bz W )

And extended many properties of fimctions analytic
in z € C to generalized solutions of (2), under suitable
hypotheses of coefficients 4(z) and B(z). Therefore the
generalized solutions of (2) are called generalized analytic
functions (see [1-5]). And some properties of the system
(1) are considered, as the necessary and sufficient
condition for the extended of a non vanished solution.

Generalized System: In this section we suppose that the
following conditions hold:

(ﬂf) Ajs(zls:ZZS:---:Zm) € CW (G): Sz]. = 1:2:- .,I’i

(b)) is analytic in W
(¢) G < C"Is domam of holomorphy

Theorem: Assume that ¢J%) # 0 and that the system (1)
has a evolution. Then the ccefficients 4,(z,) and z =
(2102255 -2 2,) Satisfy in following condition.

a4, a4
z = i s S:_j:k:-l:z:-“:n

07, 0z,
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Proof: Let W(z,.z,.....2,.) = W(z,) € ¢ (G) be a solution of
(1). Then
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Since @) #0, by comparing (4) and (5) we have (3).
Suppose that @) 1s defined in a simply connected
domain of the complex plane C and @) #0. Take an
indefinite integral #(W) of % and set

F(i7) = c.e™, ¢ =const. € C.
By definition, it is
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P
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Theorem: Tet Q=G be an open set and K be a compact
subset of €, such that O\K connected. If W(z,) is a ¢’-
solution of (1) in O\K, then the function

We=fIWiz,)
Can be extended continuously in the whole of ('K
Proof: First we consider the system of the following form

oW
= Ajs(zls 522557”52715) = A_;s(zs)

0z

> f = 1523”’3

and note that ( as in the section 2 ) it is solvable in ¢{G).
Take a fixed solution W (z,)e ¢(G) of this system and set:

i a6 =Lt o ot Y
o TG S| = A f A
®)

e

Where W (z,) is the given ¢*-solution of (1) in Q'K Then
D(z). is defined in Q\K. From (6) it follows

W (2,) = 6z, )e

For ¢ (MK
This means that ®(z) is analytic in £'\K. Because of the

Hartogs extension theorem @©(z,) has an analytic extension
@D(z)in Q. Then

FIW (2,) | ©(z,)e™E)

1s the required extension of W'f(zs) m Qed.
Now suppose that there exists =1 (or at least there
exists a single valued branch ¢! o), then from theorem

(2.2) it follows

Theorem (Hartogs Extension Theorem): Every C’-
solution of (1) in Q\K can be extended continuously in the
whole of () as a solution of this system.

Proof: Define the function ®(z,) by formula (7), where
W,(z) is the given solution in O\K, then ®(z,) is analytic
in QWK From the definition we have:

FIW (z,) = D{z,)e™ )
9)

Because of the existence off*1 . we have

135

W(z,)= fD(z,)e™E) (10)
Now Define:
Wiz)=f1®(z, ™) | (11)

Where @z, is the analytic extension of ®(z) n . Then ' (z)
1s defined for alle Q. Furthermore we have

gzi =(f iz, e iﬂ = éA;r'emu = %quge‘”ﬂ
7 * (12)
On the other hand, by defimtion (11) we have
117 (z)]= B(z,)e™ ) (13)
Hence (by virtue of (12)) it follows
%—Aﬁ.&%—flﬁ.@ 5s=12,--n (14)

Thus, W (z,) is a solution of (1) in Q. From the definition

it follows

Wiz,)=W(z,)
For ze{\K. The proof 1s complete.
Theorem: Suppose that

F as in Proposition 3.2,
T(D)=0aD xdD, = ---»x a0, as in Theorem 2.1.

W(z,)ec' (D) isasolution of (1).

Then we have

W)=, P& W E)ds -d,, =12
for z,£D where F(£, z) and I'(DD) are defined as follows

Wy (2, )= (£)

1 e
F(&,zH)=
(g 5) (27‘[1')” (§1 - 215)' ) (gn - zns)

T(D) = aD, x 8D, x ---x D,

And

Proof: Applying the Cauchy integral formula for the
analytic functions, then from (10) it follows (15).Q.e.d.
As an example to applicate the results obtamned in section
2 we consider the system
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aT:Ajs(zlsﬂzzsﬂ'”ﬂzm)'Wm s j=12,
Z g

e

In this case we haveg(W) = w™.

In the sequel we consider only ¢’- and non vanished
solutions of (16) and denote by (Q) the set of such
solutions in QcG. Then @(W)#0. Applying the theorem
(2.1) we obtain:

Proposition: For the existence of a solution W(z,)cv'(G) it
is necessary that the following condition

g5

o4
- = d4ks [l S,j,k:1,2,"',n
dz,, Oz

Js
Helds in G Now set

Wlfm
1-m

FOv) =

Then F(W) is an infinite integral of

L —
Q)

Hence the function f{i#) defined by (3.4) becomes

)= e

Without loss generality we may choose c=1 and have

FOy =

Suppose that #(z,)ev (G).As in (3.6) we define

o
9lz,) =

Then) ¢ is analytic in Q. By definition ¢#0 in €, thus
P T(Q)

WhereT({his the space of non vanished analytic functions
m Q.

Take a single-valued analytic branch of ¢ (it is possible if
€ is simply connected), we have

A = (1—m){lng + Wy}
Hence

1 1

W= (1— )" {Ing + e, 3"

Thus we have
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Proposition: For a given (z)cv'(x), there exists a
function ¢e T (Q) such that W(z)can be represented by
the formula (17).

As a direct corollary of (17) we obtain.

Theorem (Hartogs Extension Theorem): Let QG be an
open set and K be a compact subset of Q such that QWK
is connected. Then every W(z,)cv'(Q\K) can be extended
to a solution W (z,) of the system (16) in Q.

Proof: Define the function ¢ by formula (7), where
Wiz)ev' (QK). It is easily to show that Q¢ T'(QAK). Then
1 1s analytic in

¢

Because of the Hartogs extension theorem, ¢ and
(K can be extended analyticaly in the whole of (.
Denote by ¢ the analytic extension of ¢, then ¢ is the

analytic extension of¢h. Hence it follows that
¢(z)#0
For z’c Q or ¢ T (Q)

Taking a single-valued analytic branch of ¢ and define

L

W = (1— my™ {La® + @, ]
Then

- mr L LD+ oy 2
oz ”
=4, (- m{Lnd + w, ]~

= A 57"

Hence # 1is a solution of (16) in Q. By definition it is
W= QK.

Thus W is the required extension of W.Q.e.d.
CONCLUSTONS

The generalizations of these systems have many
potential applications in partial differential equations.
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