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Influence of Neutral Surface Position on Deflection of
Functionally Graded Beam under Uniformly Distributed Load
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Abstract: Bending analysis of a functionally graded (FG) simply supported beam subjected to a uniformly

distributed load has been mvestigated. The material properties of the beam vary continuously in the thickness
direction according to the power-law form. The neutral surface position for such FGM beams is determined.

The present model 1s compared with the conventional mid-surface based formulation. In this study, the effect
of power law index on the deflection of the beam is examined. Numerical results indicate that position of neutral

surface 1s very important in functionally graded materials.
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INTRODUCTION

Recently, a new class of composite materials known
as functionally graded materials (FGMs) has attracted
considerable attention. Typically, FGMs are made from a
mixture of metals and are further
characterized by a smooth and contimious change of
the mechanical properties from one surface to another.
It has been reported that the weakness of the fiber

reinforced laminated composite materials,

and ceramics

such as
debonding, huge residual stress, locally largely plastic
deformations, etc., can be avoided or reduced in FGMs
[1,2].
Static and dynamic analyses of FGM structures
attracted increasing research effort in the last
decade because of the wide application areas of
FGMs. For instance, Sankar [3] gave an elasticity
solution based on the Euler-Bemoulli beam theory for
functionally graded beam subjected to static transverse
loads by assuming that Young’s modulus of the beam
vary exponentially through the thickness. Chakraborty
[4] proposed a new beam finite element based on the
theory to study the
thermoelastic behavior of functionally graded beam
structures. In [4], static, free and wave propagation

have

first-order shear deformation

analyses are camried out to examine the behavioral
difference of functionally graded material beam with pure
metal or pure ceramic. Zhong and Yu [5] presented an
analytical solution of a cantilever FG beam with arbitrary

graded variations of material property distribution based
on two dimensional elasticity theories. Kapuria [6]
presented a finite element model for static and free
vibration responses of layered FG beams using an
efficient third order zigzag theory for estimating the
effective modulus of elasticity and its experunental
validation for two different FGM systems under various
boundary conditions. Ti [7] proposed a new unified
approach to mvestigate the static and the free vibration
behavior of Euler-Bernoulli and Timoshenko beams.
Kadoli [8] studied the static behavior of a FG beam by
using higher order shear deformation theory and finite
element method. Benatta [9] proposed an analytical
solution to the bending problem of a symmetric FG
beam by including warping of the cross section and
shear deformation effect. Sina [10] used a new beam
theory different from the traditional first order shear
deformation beam theory to analyze the free vibration
of a FG beams.

In the above studies neutral surface is coincide with
geometric mid-surface. Neutral surface of functionally
graded beam may not coincide with its geometric mid-
surface, because of the material property variation
through the thickness.

In the present paper, first, the position of neutral
surface for fimctionally graded beam i1s obtamed then
Influence of neutral surface position on deflection of
functionally graded beam under umiformly distributed
load is studied.
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Fig. 1: A functionally graded simply supported beam subjected to a uniformly distributed load

Theoretical Formulation: A functionally graded simply
supported beam of length 7, width 5, thickness i, with
coordinate system Cxyz having the origin < is shown in
Fig. 1. The beam iz subjected to a uniformly distributed
load 4.

In this study, it is assumed that the FG beam is
made of ceramic and metal and the effective material
properties of the FG beam, i.e., Young’s modulug ¥ vary
continuously in the thickness direction ( z axis direction)
according to power-law form introduced by Praveen and

Reddy [11]
]k

Where I is the power law index that takes values greater
than or equal to zero, /1 and ¢ stand for metal and ceramic
constituents, respectively.
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E[z)=Em+[EC—Em:l[

Position of the Neuiral Surface: Prior the
determination of a desirable solution, the location of the

fo

neutral surface must be given. Clearly, due to varying
young's modulus of the beam, the neutral surface iz no
longer at the midplane, but shiffed from the midplane
unless for a beam with symmetrical young's modulus.
To determine the position of the neutral surface, we
construct a new coordinate system such that the new
x-axiz iz placed at the neutral axis, which will be
determined below. Then we have

r=x,z=z;+hy (2)
Where #; iz the distance of the neutral surface from the
midplane of the beam. In this case, similar to the usual
treatment in the Euler-Bernoulli beam theory, we can
directly write the strain ¢,, and o,, as

3)
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T = E(21) 8 ey
Where w is the deflection of the functionally graded
beam and pis the curvature radius of the neutral surface.
Here the small deformation assumption has been
employed. The position of the neutral surface can be
determined by choosing /i, such that the total axial force
at crogs- section vanishes

h
Z“Fx=0—>j2}1 GrdA=0 (5)
-2y
Substituting (3) together with (4) into (5) result in
h
-
_[2}: be[zl)xZ—ldz1=0 (6)
—z_ho P
By changing interval of integral we have
2 i
Izhbe(z)xZ_ Liz =0 (M)
7
Then
h h
(8)

% I_%E[z)xzdz—hnj_%f?[z)xdz ~0
2 2

The position of neutral surface can be determined from
below equation

P
I

E(z)zdz

hy ®)
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Substituting Eq. (1) into Eq. (9) and integrating gives

k
E.—-E )——F——
_( ¢ ’")(k+2)(2k+2)
ho E.—E
E, +—<——m
o k+1
Also, value of k that maximize hy/h, is calculated from

below equation
io hE
Em

Deflection of Functionally Graded Beam: Now let us
consider a FGM simply supported beam that is shown in
Fig. 1. Bending moment in equilibrium can be expressed as
an integral in terms of internal stress:

(10)

an

12)

Where D denotes bending rigidity of the FGM beam,
defined by

h
D= fﬁbE(z)(z—%)zdz (14)
2

For the case of beam subjected to a uniformly distributed
load g we have

2
M(x) =2 (15)
2 2
Boundry condition for simply supported beam is
w=0atx=0,] (16)

After inserting (15) into (13) we integrate both sides
(15) with respect to x twice and by applying the boundry
conditions (16) we obtain

w=L(L’x—2Lx’+x4) (17)
Plugging Eqs. (3) and (4) into Eq. (12) leads to a 24D
differential equation
Maximum deflection is occurred in middle of beam
2 4
d*w _ M(x) (13) _5qL (18)
2 Wimax =
dx D 384D
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Fig. 2: Effect of the gradient index on the position of the neutral surface of the beam
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Fig. 3: Influence of neutral surface on deflection of FG beam along the length of beam for k=1, 3
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Fig. 4: Maximum deflection respect to k

Numerical Results: A ceramic-metal functionally graded
beam is considered. The combination of materials consists
of aluminum and alumina. The Young’s modulus for
aluminum and alumina are E,, = 70GPa, E, = 380GPa. The
boundary conditions are assumed to be simply supported.
The shift (4,) of the neutral surface from the geometric
mid-surface is calculated using Eq. (10) and plotted in
Fig. 2. It can be noted from the figure that the
nondimentional shift (4/h) increases with the increase
in k and reaches a maximum value for k which is
determined from (11) after which the curve drops down

340
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and reaches zero asymptotically. It can be seen that
the nondimentional shift is zero for the isotropic plates,
i.e., for the pure ceramic beam (k = 0) as well as for the
pure metallic beam (k = ).

Fig. 3 shows the deflection of functionally graded
beam under uniformly distributed load for k= 1,3, L =20m
and two state of neutral surface and middle surface
respect to x. We can see that the values of deflection
for neutral surface are more than middle surface. Fig. 4
shows difference of maximum deflection for neutral
surface and middle surface respect to £ for L 10m.
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When the power-law exponent is increased, the
maximum deflection of the FG bearn 1s mereased. Maximum
difference for two cases occurs in k= 3.295 and then it is

decreased. For all of above cases b= h=1m.
CONCLUSION

In this article, first, the position of neutral surface for
functionally graded beam 1s obtammed then influence of
neutral surface position on deflection of functionally
graded beam under uniformly distributed load 1s studied.
Tt is concluded that:

*  The neutral surface for functionally graded beams
shifts towards ceramic rich surface. The distance
between neutral surface and mid-surface mcreases
with the increase in gradient index k, reaches a
maxiumum value, after which drops down and reaches
zero asymptotically.

¢+ When the difference between young’s modulus of
ceramic and metal 15 decreased, the nondimentional
shift (#,/k) is decreased.

*  The values of deflection for neutral surface are more
than middle surface.

¢  When the power-law exponent is increased, the
maximum deflection of the FG beam 1s increased.
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