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Series Solution for Unsteady Gas Equation via Mldm- Pade´ Technique
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Abstract: In this paper, we propose a new approach to solve the unsteady gas equation. We apply the
Modified Laplace decomposition method (MLDM) coupled with Pade´ approximation to compute a series
solution of unsteady flow of gas through a porous medium. The proposed iterative scheme finds the solution
without any discretization, linearization or restrictive assumptions. The nonlinear terms can be easily handled
by the use of Adomian polynomials. The diagonal Pade´ approximants are used to analyze the essential
behavior of y(x) and to determine the initial slope y'(0). The proposed scheme avoids the complexity provided
by using perturbation and other iterative techniques.
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INTRODUCTION The unsteady flow of gas through a porous medium

We consider the flow of gas through a semi-infinite techniques including decomposition, variational iteration
porous medium [1-3] initially filled with gas at a uniform using He’s polynomials and Homotopy perturbation
pressure p  0, at time t = 0, the pressure at the outflow methods have been used for the analysis of this problem,0

face is suddenly reduced from p  to p  0 ( p  = 0 is the see [6-8]. Khuri [9] proposed a Laplace decomposition0 1 1

case of diffusion into a vacuum) and is, thereafter, method (LDM) for the approximate solution of a class of
maintained at this lower pressure. The unsteady nonlinear ordinary differential equations. In 2006,
isothermal flow of gas is described by a nonlinear partial Agadjanov [10] developed this method for the solution of
differential equation. The nonlinear partial differential Duffing equation. The Laplace decomposition method
equation that describes the unsteady flow of gas through (LDM) was proved to be compatible with the versatile
a semi-infinite porous medium has been derived by nature of the physical problems and was applied to a wide
Muskat [4] in the form. class of functional equations; see [11-16]. Recently a

(1) algorithm has been done by Yasir[17]. The modified

Where: with the Adomian decomposition method where huge
P is the pressure within porous medium,  the porosity, complexities are involved. The fact that MLDM solves
u the viscosity, k the permeability and t the time. New nonlinear problems without using any restricted linear
variables were introduced by Kidder [2] and Davis [5] to highest-ordered differential operator. It can be considered
transform the nonlinear partial differential equation (1) to as a clear advantage of this technique over the Adomian
the nonlinear ordinary differential equation. The nonlinear decomposition method. It is worth mentioning that the
ordinary differential equation due to Kidder [2] given by MLDM is applied without any discretization, restrictive
(unsteady gas equation) assumption or perturbation and is free from round off

(2) introduce the new analytical method for finding the

has been investigated by number of authors and several

reliable modification of the Laplace decomposition

Laplace decomposition method is much easier compared

errors. The objectives of this paper are three-fold: first, to

analytical  solution  of  unsteady  flow   of   gas  through
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porous medium which primarily lie in its ability to avoid
the unnecessary calculations of other iteration methods;
second, our aim is to compare the results with solutions
to the existing ones [6-8]; and third, to extend our
previous approach proposed in [17] on semi-infinite (10)
domain. To make the work more concise and to get a Matching both sides of Eq. (10), we have the
better understanding of the solution behavior, the series following relation;
solutions are replaced by the diagonal Pade´ approximants
[19-29]. (11)

Modified   Laplace   Decomposition Method   (MLDM):
In order to elucidate the solution procedure of the (12)
modified Laplace decomposition method, we consider the
following general form of second order nonlinear ordinary
differential equation with initial conditions is given by

f  + b (x)f  + b (x)f = g(y) (3) In general the recursive relation is given by1 2

f(0) = ,f (0) = (4) (13)

According to Laplace decomposition method [9, 10],
we apply Laplace transform (denoted throughout this Taking the inverse Laplace transform from both sides
paper byL) on both sides of Eq. (3): of Eq. (11)-Eq. (13), one obtains

s L[f] - s  -  + L[b (x)f ] + L[b (x)f] = L[g(y)] (5) f (x) = H(x), (14)2 1 1 2

Using the differentiation property of Laplace
transform, we have

(6) Where:

The Laplace decomposition method [9, 10] admits a decomposition method [17] suggests that the function
solution in the form H(x) defined above in (14) be decomposed into two parts,

(7) namely H (x) and H (x). Such that.

The nonlinear term is decomposed as

(8) (14) as the initial solution always leads to noise oscillation

Where modification.
A  are Adomian polynomials of g ,g ,g ,g ,...,g  and it canm 0 1 2 3 n

be calculated by the following formula

(9)

Using Eq. (7) and Eq. (8) in Eq. (6) we get (17)

0

(15)

H(x) represents the term arising from source term and
prescribe initial condition. The modified Laplace

0 1

H(x) = H (x) + H (x). (16)0 1

The initial solution is important and the choice of Eq.

during the iteration procedure. Instead of the iteration
procedure, Eqs. (14) and (15), we suggest the following
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The solution through the modified Laplace
decomposition method highly depends upon the choice
of H (x) and H (x)0 1

Numerical Application: In this section, we apply the
modified Laplace decomposition method (MLDM) for
finding the analytical solution of the unsteady flow of gas
through a porous medium.

(18) (24)

With conditions components of y(x).
(25)

Where:
y (0) = B < 0, will be examined in this work. By applying
the aforesaid method subject to the initial conditions, we
have

(19)

The inverse of Laplace transform implies that

(20)

Following the technique, if we assume an infinite
series solution of the form (7) we obtain

(21)

Through the modified Laplace decomposition method Padé Approximants: Padé approximants constitute the
[17] the function H( ) can be written as best approximation of a function by a rational function of

H(x) = 1 + Bx = H (x) + H (x), (22) approximation of a function than its Taylor series and0 1

By this consideration, we first set modified recursive does not converge. For these reasons, Padé approximants
relations in the form are used extensively in computer calculations and it is

(23) advantage to manipulate polynomial approximation into

In the above equation A (x) are the Adomian contain the boundaries of the domain. To provide anm

polynomials [18]. For convenience, we list below the first effective tool that can handle boundary value problems
few Adomian polynomials A (x). on  an  infinite  or   semi-infinite   domain,   it   is  thereforem

Using above polynomial, we calculate other

The series solution is given by
(26)

a given order. Padé approximants often provide better

they may still work in cases in which the Taylor series

now well known that these approximants have the

the rational functions of polynomials. Through such
manipulation, we can gain more information about the
mathematical behavior of the solution. In addition, power
series are not useful for large values of a variable, say

, which can be attributed to the possibility of the
radius of convergence not being sufficiently large to
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Table 3.1: Exhibits the initial slopes B = y (0) for various values of .

B  = y (0) B  = y (0)[2/2] [3/3]

0.1 -3.556558821 -1.957208953

0.2 -2.441894334 -1.786475516

0.3 -1.928338405 -1.478270843

0.4 -1.606856838 -1.231801809

0.5 -1.373178096 -1.025529704

0.6 -1.185519607 -0.8400346085

0.7 -1.021411309 -0.6612047893

0.8 -0.8633400217 -0.4776697286

0.9 -0.6844600642 -0.2772628386

Table 3.2: Exhibits the values of y(x) for  = 0.5 for x = 0.1 to 1.0

x  y kidder y y[2/2] [3/3]

0.1 0.8816588283 0.8633060641 0.8979167028

0.2 0.7663076781 0.7301262261 0.7985228199

0.3 0.6565379995 0.6033054140 0.7041129703

0.4 0.5544024032 0.4848898717 0.6165037901

0.5 0.4613650295 0.3761603869 0.5370533796

0.6 0.3783109315 0.2777311628 0.4665625669

0.7 0.3055976546 0.1896843371 0.4062426033

0.8 0.2431325473 0.1117105165 0.3560801699

0.9 0.1904623681 0.04323673236 0.3179966614

1.0 0.1587689826 0.01646750847 0.2900255005

essential to combine the series solution, which is obtained
by the iteration method or any other series solution
method, with the Padé approximants.

The diagonal Pade´ approximants [19-29] can be
applied to investigate the mathematical behavior of the
solution y(x) to determine the initial slope y (0).

The above tables clearly reveal that present solution
method namely MLDM shows excellent agreement with
the existing solutions in literature [6-8]. This analysis
shows that MLDM suits for Boundary layer flow
problems.

CONCLUSION

This paper presents a Modified Laplace
Decomposition method, the MLDM, that can be employed
to solve Unsteady gas equation. The proposed
algorithm’s ability to solve nonlinear problems without
the use of restricted linear highest-ordered differential
operator is evidence of its clear advantage over the
Adomian decomposition method. It may be concluded
that the MLDM is very powerful and efficient in finding
the analytical solutions for a wide class of differential
equations. The method gives more realistic series
solutions that converge very rapidly in physical problems.

Comparison of the present solution is made with the
existing solution [6-8]. An excellent agreement between
the present and existing solutions is achieved.
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