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An Analytical Technique for Shock-Peakon and Shock-Compacton Solutions
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Abstract: This paper outlines the implementation of variational iteration method (VIM) for finding new solitary
solutions for nonlinear dispersive K (p, q) equations. Numerical results coupled with the graphical represnation
explicitly reveal the accuracy, simplicity and efficiency of the proposed algorithm.
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INTRODUCTION

The nonlinear K(p, q) equations [1-36] arise very
frequently in various physical phenomenon and a new
type of solution which is named as peakon and Where    is   a   Lagrange   multiplier  [13-21, 33-36],
compacton is of utmost importance in this context. The which  can  be  identified  optimally  via variational
generalized form of a nonlinear dispersive equation K(p, iteration method. The subscripts n denote the nth
q) is given by: approximation, is considered as a restricted variation.

u  + (u )  + (u )  = 0. (1)t x xxx
p q

Due to the great physical significance of (1),
extensive research work has been carried out by various
authors, see [1-12] and the refernces therein. The basic
motivation of this paper is the implemenation of
variational iteration method for finding peakon and
compacton solutions of nonlinear dispersive K(p, q)
equation. It is observed that the proposed technique
(VIM) is extremely simple and is highly suitable for such
problems. Numerical results coupled with the graphical
represenation explicitly support our claim.

Variational Iteration Method (VIM): To illustrate the
basic concept of the He’s VIM, we consider the following
general differential equation.

Lu + Nu = g(x), (2)

Where L is a linear operator, N a nonlinear operator and
g(x) is the inhomogeneous term. According to variational
iteration method [13-21, 32-40], we can construct a
correction functional as follows.

(3)

i.e.   (2)   is   called   a   correction  functional.
The   solution   of   the   linear   problems   can   be solved
in  a single  iteration  step  due  to   the  exact
identification   of   the   Lagrange   multiplier.  The
principles of variational iteration method and its
applicability  for  various kinds of differential equations
are  given  in  [13-21,  33-36].  In  this  method,  it is
required first to determine the Lagrange multiplier
optimally.  The  successive  approximation  u ,  n 0  ofn+1

the solution u will be readily obtained upon using the
determined  Lagrange multiplier and any selective
function u  consequently, the solution is given by0

 The convergence of variational iteration

method has been discussed in [20].

Solution Procedure
Shock Peakon Solution in K(2, 2) Equation: Now we
consider K(2,2) equation:

ut + a(u )  + (u )  = 0, (4)2 2
x xxx

To search for its solution, we can assume an initial
condition in the form
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(5)

Where x  and c are constants. The correction functional is give by0

Making the correctional functioanl stationary, Lagrange multiplier can be identified as (s)= -1, consequently

Following approximants are made:

(6)

(7)

(8)

(9)

and so on, the rest of the components of the iteration can be deduced by Mathematical package. The solutions u(x,t)
are readily found in a closed form

(10)

Where  = x + ct + x . The  obtained  compacton  solution,  Eq.(14),  has  the  same  expression  with  that  in  Ref.  [13].0

The solution is shown in Fig. 1 with a = 1, c  = -1, x  = 0. From (10), we can find compacton solution arise as a > 0.0 0

Therefore, we pay more attention to what happens to the solution when a > 0. Assuming another initial condition as
, we can then obtain the solution u(x,t) in a closed form as.

(11)

Where A,x  and c  are arbitrary constants, which are flowing peakon solutions as shown in Fig. (2) with A = 1, a=-1, c0 0 0

= 1, x  = 0. Note that A in (11) is an arbitrary constant, hence we can obtain a new solitary solution called shock-peakon0

solution which can be written in the form.
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Fig. 1: Compacton solution Fig. 2: Flowing peakon solution

Fig. 3: Shock-peakon solution.

(12)

Where = x-(3/2)ac t + x  and sign( ) = | |. The shock-peakon solution illustrated Fig.(3) with A = 1, a=-1, c  = 1, x  =0 0 0 0

0. This is a new type of solitary waves and is a discontinuous wave. Hence it is shock wave. At the same time, it is a
peakon as well. In fact, from the graphs and computation we can find that it has a discontinuous first-order derivative
at  = 0. But, this solitary wave is non-local. It can be expressed by  function. Note that the fact.

(13)
Hence

(14)

Where ( ) is  function. Assuming different initial conditions, we may obtain different exact solution in a closed form
as follows:
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u(x,0)

u(x,0)

Shock Peakon Solution in K(3,3) Equation: Now we consider K(3,3) equation:

u  + a(u )  + (u )t x xxx
3 3

(15)
According to HPM, we readily construct the homotopy.

u  + p(a(u )  + (u ) ),t x xxx
3 3

(16)
To search for its solution, we can assume an initial condition in the form

(17)

Where x  and c are constants. The correction functional is give by0

Making the correctional functioanl stationary, Lagrange multiplier can be identified as (s) =-1, consequently

Following approximants are made:

(18)

(19)

(20)

(21)

and so on. The solutions u(x,t) in a closed form are obtained by Mathematica package

(22)

Where  = x + ct + x . The compacton solution is shown in Fig.(4) with a=-1, c  = 1, x  = 0.0 0 0
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Fig. 4: Compacton solution Fig. 5: Shock-compacton solution

By the same method, we can obtain the solution u(x,t) in a closed form as

(23)

So we can obtain a new solitary solution called the shock-compacton solution as follows

(24)

Which is shown in Fig.(5) with a=-1, c  = 1, x  = 0. Form the graphs and computation we can find that it has0 0

discontinuous first-order derivative at  = 0, ±  /2. Note that the fact

(25)

(26)

We have

(27)

Where

(28)

( ) is  function. Hence shock-compacton solution is non-local and new type of solitary wave. It has the characters
of shock and compacton.



World Appl. Sci. J., 10(12): 1407-1413, 2010

1412

CONCLUSION 12. Zhu, Y. and X. Gao, 2006. Exact special solitary

In this study, we obtain two new types of solitary
wave solution: shock-peakon and shock-compacton for
K(p, q) equation by means of the variatioanl iteration
method. They are non-local shock wave solutions, having
the characters of peakon and compacton. Nnumerical
results clearly reveal the complete reliablity of the
proposed algorithm.
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