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Abstract: In this paper, we have studied the stability of the difference equation system
= X Vs Yy, = Vut Xos . n=0,1,2,. wherex,x. Xy, are positive real numbers.
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INTRODUCTION U S .
! 1+yn7kynfm (5)

Our aim in this paper is to investigate the stability of
the difference equation system.

+ +
PR R N =V ¥
xnyrﬁZ + 1 ynxan + 1 (1)
Where
XX X Vo0V Yy €R' ()

Some Papers Related to this Subject Are the Following:
Cinar [1] has obtained a sufficient condition for the global
stability of the difference equation system

— Zrztn—I

Znsi > Pnel T

z,+t,_,

+a tz . +a
=2t p=0,12,...
t+z,, 3)

Where ae(0,~) and (z,, t,) for /=-1,0..
Li and Zhu [2] proved that the unique positive
equilibrium of the difference equation

X X +a
X, =1 — n=01,..
+x “)
xn n—1

Where ae(0,-) and x ,,x, are positive, is globally

asymptotically stable.

Berenhaut, Foley and Stevic [3] has showed that the
unique positive equilibrium y =171 of the difference
equation

is globally asymptotically stable.
Moreover, Amleh, Kruse and Ladas [4] proved that
all positive solutions of the difference equations:

— xn +xn7[xn72 — xnfl +xnxn72 — xn +xn71xn72

n+l > T+l > T+l (6)
XX, ,+x,_, XX, _, +x,_, XX, _,+Xx,,

" n—1 nn—1 ' n—2

Where the initial values x_,,x_,,x, are positive, converge

to 1 as n—eo,
Abu-Saris, Cinar and Yalcinkaya [5] have proved that
the equilibrium solution of the difference equation

Vet =2tk ¥ g
Yot Vuk ™)

positive, is globally asymptotically stable.

In this paper, in a similar way to the before mentioned
works, we define the equation system (1) with conditions
(2) and investigate the solutions of this difference
equation system. Here, we review some results [6] which
will be useful in our investigation of the behavior of the
solutions of the system (1).

Let I be some interval of real numbers and let f, g : 1</
- I be continuously differentiable functions. Then for all
initial values (x,, ) € [ and k = -2,-1,0 the system of
difference equation
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xn+l :f(xm y;x-2)9 yn+1 = g(.yn) xn-Z)s n= 0517"' (8)

has a unique solution {( X,y )}x .
non))p=—2

Definition 1.1:A point (x.7) is called an equilibrium

point of the system (1) if.

¥=f(%7)and 7=¢g(%.7) ©)

Definition 1.2: Let (x.7) be an equilibrium point of the

system (1).

*  Anequilibrium point (x.7) is said to be stable if for

any € > 0 there is & > 0 such that for every initial
points (x.,, y,),(x.1, ¥.,) and (xo, y,,) for which

||(x_2,y_2) _(fi)" +||(x—1’y—1) _(EJ_’)" +||(x0'y0) —(fi)” <6

the iterates (xm yn) Of (x»zs y-Z)s(x»ls y-l) and (x09 yO) SatiSfy

Ix,.,)-(x.5)|<e . forall n>0 (10)

An equilibrium point (x.7) is said to be unstable if

it is not stable. (By ||.|| we denote the Euclidean norm in R

given by "(xn;)’n) :m).

* An equilibrium point

(%.7) is said to be

asymptotically stable if there exists » > 0 such that

(s o) = e as n = e forall (x5, y.,), (x, 1) and (xo, y)
that satisfy.

"(x—z’yfz) _()_Ci)" +||(x7,,y7,) —(ff)" +||(x0,y0) _()_Cy)"(ilr)

Definition 1.3:Let (%.7) be an equilibrium point of a map

F = (f, g), where f and g are continuously differentiable
functions at (%.7) - The Jacobian Matrix of F at (x.7) is

the matrix.
2@ ZE)
5 (75)-
oo oo (12)
a—‘i(xyy) ﬁ(x:y)

The linear map

—_ —_ x} y
Ox oy

Je(pg)(x.7)= (13)
ZEDr BT

is called the linearization of the map F at (x.7)-

Theorem 1.4: Let FF = (f g) be a continuously
differentiable function defined on an open set I in R’ and
let (%.7) be an equilibrium point of the map F = (f, g).

+ Ifall the eigenvalues of the Jacobian matrix s, (x.7)
have modulus less than one, then the equilibrium
point (x.7) is asymptotically stable.

« If at least one of the eigenvalues of the Jacobian
matrix Jp(%.7) has modulus greater than one, then
the equilibrium point (x.7) is unstable.

*  An equilibrium point (x.7) of the map F = (f, g) is

locally asymptotically stable if and only if every
solution of the characteristic equation.

-t () A +detd, (%7)=0  (14)
lies inside the unit circle, that is, if and only if

|on . (%.5)| < 1+ det J . (¥,7) <2 (15)

Definition 1.5: Let (x.7) be a positive equilibrium point

of the system (1).

A string of consecutive terms  {x,....x,}
(resp.{x,,....x,,}), s > - 1, m is said to be a positive
semicycle if x;>2Xx (resp. y;2¥), i €, {s,...m} (resp.

X <X (y,_;<y)and x,,; <X (resp. V,.; <V ).

A string of consecutive terms {x....x,} (resp.
DoV} )s YoeeeVmp 8 > = 1, m <= is said to be a negative
semicycle if x; <X (resp. y; <V ), I €, {VpueVu} Xi2X

(resp. y, ;2 7)and %, 2% (resp. 3,27 ).

A string of consecutive terms {y,...,y, }(resp.
{VspeesVmt)s 8 = —1, m < = is said to be a positive (resp.
negative) semicycle if {y,....v.}, {Vp-nVm) are positive
(resp. negative) semicycles.
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Finally, a string of consecutive terms {(x, ¥,),...,(X,»
¥,,)} 1s said to be a semicycle positive (resp. negative) with
respect to x, and negative (resp. positive) with respect to
y, if {y,,...,y,,} 18 a positive (resp. negative) semicycle and
{Vsr-enVu} 18 @ negative (resp. positive) semicycle.

A solution {( ®  of the system (1) is called
n=-2

XnsVn )}
non-oscillatory about (X,5), or simply non-oscillatory ,
if there exists N > -2 such that either x, >x and y, >y

for all » = N or x,<x and y,<y for all n = N.

0

Xl
about (x,¥) , or simply oscillatory.

Otherwise, the solution {( is called oscillatory

Main Results: The equilibrium points (¥,7) of the

system (1) are the solutions of the system.

(16)

So (x.¥)= (1, 1) is the unique positive equilibrium

and (x,7)=(0,0) is the zero equilibrium. The
characteristic equations of the system (1) at (1,1) and (0,0)
are respectively

=0 and A*-2A=0 (17)
Theorem 2.1: Let (1,1) and (0,0) be the equilibrium points
of the system (1).
* The unique positive equilibrium (1,1) is locally
asymptotically stable.
*  The zero equilibrium (0,0) is unstable.
Proof (1): According to (17), the eigenvalues at the
unique positive equilibrium (1,1) are A, = A,. Therefore, the
system (1) is locally asymptotically stable at (1,1).
(2) According to (17), the eigenvalues at the zero
equilibrium (1,1) are A, =0 and A, = 2 . Thus, the system
(1) is unstable at (0,0).

Lemma 2.2: A positive solution {(x"’y" )}":—2 of the
system (1) is eventually equal to (1,1) if and only if
(e =D - D2 = DO - 1) =0 (18)

Proof: Let x, -1. Then from (1),

1308

:yo+x_2:y0+]:1 :]+x71:] :]+x0:

Yi 1
I+ypx_, yy+1 x_;+1 Xg+1
and
_ YotV _ Xty _ Xt
! 1+x0y72’ ? ]+x1y71’ ’ ]+x2y0’
. = X+ :x3+1:1 . :x4+]:1 . :x5+1:1
! I+x;y, I+x; I+x, 1+ x5

From (1), (x, y;) = (1,1), for (i =4.5,...). Similarly, forx,
=1,y,=1andy, =1 we get (x, y) = (1,1), for i =4,5,...).
Conversely, for ¢ € {-2,0} assume that

x,#lory +1 (20)
Then we must show that
x,#lory,#1lforn=1 21

Consider that for some N > 1,
For-1=n<N-1,xy=y,=landx,#1,y,#1 (22)

We can easily say that

RS
= W NS o (= 1) (v - 1)

= 0
N
I+ xy_1¥n-3

I=x

(23)

From (23), x,,, = 1 or yy; =1. This contradicts equation
(22).

Lemma 2.3: Let {( X7 )}00 be a positive solution of
wrn))p=_2

the system (1) which is not eventually equal to (1,1). Then
the following statements are true:

(@) G, ~ X)), — 1) <0and (y,., - y,)¥, - D<0, forn = 0
(i)(x,; = x)x, = D) (1 - p,2)>0and (y,., - y), - D (1

-Xx,,)>0,forn>0

Proof: From the system (1),

xn—Z(I_yiz)(]+yn)
]+ynxn—2

il ~Xn = and Yot =V =
]+xnyn—2
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O D=5,)

and -
Y+l I+ yaniz

(25)

for n =0,1,... from which inequalities in (i) and (ii) follow.

Lemma 2.4: If x,, y, <1 for k =-2,-1,0 then (x, y,) is a
negative semicycle of the system (1) with an infinite
number of terms and it monotonically tends to the unique
positive equilibrium (x.7)=(L1)

Proof: Ifx,, y. < 1 for k =-2,-1,0, then from Lemma 2.3.[ii]
and [i],

0<x,<x; <..<x,<land0<y,<x <.<y, <1 (26)

Clearly,(x,, v,) is a negative semicycle of the system
(1) with an infinite number of terms. Furthermore, we know
that (x,, y,) is strictly increasing for n = 0. So the limits

lim x, =(; and lim y, =10, 27)
n—o0

n—0

exists and are finite. Taking the limits on both sides of the
system (1), we have

A+,

_ an Ayt
1+0,0,

! S+, (28)

2

thus ¢, =1,=1.

Lemma 2.5: Let {( *®  be a positive solution of

Ynr Y )}n=—2
the system (1), and consider the following cases:

1:x,>1and x.,, Xo,V0 Vo, Vo < 1
2: x> 1and x.,, Xo,V Voiy Vo < 1
3:y,>1and x,, x;, X, Voo V., < 1
4: x4, y,> land x5, Xg, V5, ¥, < 1
S5:y,,ya>land x,, x, X, Yo < 1
6:v,,1,>1and x,, x, x5, v, <1
7 Vo Vo> Land x,, x., x, < 1
8y, v, x> 1and x,, X, 1y < 1
9: x5, X, Vo> land x, v, vy < 1
10: x5, ¥, ¥o> 1 and x,, x,, ¥, < 1
11:x0, ¥, ¥y ¥ > land x,, x, <1
12: %, Y5, Y. 0,> 1 and x,, x, < 1
13: x5, X Va2 Vi Yo>1 andx, <1

If one of the above cases occurs, then

«  Every positive semicycle associated with {x,} of the
system (1) consists of one term and negative
semicycle associated with {x,} of the system (1)
consists of five, three or one terms;

«  Every positive semicycle associated with {y,} of the
system (1) consists of six or two terms and negative
semicycle associated with {y,} of the system (1)
consists of four or two terms;

» The positive and negative semicycles associated
with {y,} one of the form is 17,5,1%,1,1%,1",17,37;

* The positive and negative semicycles associated
with {y,} one of the form is 6°,27,2" 4",

Proof: Consider x, .1 and x_, Xy, V., V.1, Vo <1, then in view
of inequality (ii) of Lemma 2.3. we have:
S > o<t v <1,y 1 x>, p>15 x5<, ys>1;
x> Lye>1; <L, y<L; x>1, ye> 15 x0<1, yo>1; x,5<1L, y1>1;
x <1, yiu<l; xp>1, y<1; x5<1, yi3>1; x,<1, ;<1 which
imply that a positive semicycle associated with {x,} of
length one is followed by a negative semicycle of length
five, three or one which in turn is followed by a positive
semicycle length one. Similarly, a positive semicycle
associated with {y,} of length six is followed by a
negative semicycle of length two, the negative semicycle
of length two is followed by a positive semicycle of length
two, the positive semicycle of length two is followed by
a negative semicycle of length four.

The other cases can be easily shown. We omit the
proofs of the following three results since they can easily
be obtained in a similar way to the proof of Lemma 2.5.

®  be a positive solution of
Fnr Vn )}n=—2 P

the system (1), and consider the following cases:

Lemma 2.6: Let {(

14: x,, vy, > land x, Xy, Vo, Yo < 1
15:y,5, 0> Land x,, x4, X5,y < 1
16: x5, x,, 1, > 1and xp, v, y, < 1
17: x4, X, ¥, > land x,, y,, ¥ < 1
18: %0, ¥, ¥o>land x,, x,, ¥, <1
19: x5, X0, yo> land x,, y,, y, < 1
20: X, Y0y > L and x,, xp, y., < 1
21:x,, Xg, Voo v > Land x,, yy < 1
22: X5, Xgy ¥V2r Vo> land x, y, < 1
23: X5, X0, Y2, v > Land x,, < 1
24: x,,x.,, % y,>1landy,, y, <1
25: %0,y Y1 Yo > 1 and x,, x, < 1
26: X5, X, Vo Vi Yo > land x, < 1
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If one of the above cases occurs, then

Lemma 2.7: Let {(

Every positive semicycle associated with {x,} of the
system (1) consists of three, two or one terms and
negative semicycle associated with {x,} of the
system (1) consists of three or one terms;

Every positive semicycle associated with {y,} of the
system (1) consists of four, two or one terms and
negative semicycle associated with {y,} of the
system (1) consists of two or one terms;

The positive and negative semicycles associated
with {x,} one of the form is 37,3,2%,1,1%,1.,2%,1";

The positive and negative semicycles associated
with {y,} one of the form is 4°,17,2%,2°,17,2",1",1".

0

Xy Vn )}n=—2 be a positive solution of

the system (1), and consider the following cases:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

X Xo> land X, ¥, ¥4, Y9 < 1
X, y2> 1and x,, X, .1, ¥y < 1
X, X4, Yo > 1 and x, o, ¥y <1
X.p, Xos Yo > land x5, v, y, < 1
Xo Vo ¥ > L and x,, x4, yp < 1
X, Voo Yo > land x,, x,, ¥, <1
X, Yasya > Land x4, X, ¥ < 1
X Xos Vg > landx,, vy, yp <1
X, Yy Yo > land xy, x5, y, <1
X, Xos ¥2r o> 1 and x,, y,, <1
Xy Vs YVa Vo> land x;, x, <1
X X Ya Yo > 1 and x,, ¥, <1
X0 X Y2y Yo > 1 and xy, y, <1
X X5 Xg V.0, Yo > 1 andy, <1
X5 Xy Xos Vo ¥ > Land y, <1

If one of the above cases occurs, then

Every positive semicycle associated with {x,} of the
system (1) consists of four, two or one terms and
negative semicycle associated with {x,} of the
system (1) consists of two or one terms;

Every positive semicycle associated with {y,} of the
system (1) consists of three, two or one terms and
negative semicycle associated with {y,} of the
system (1) consists of three or one terms;

The positive and negative semicycles associated
with {x,} one of the form is 4°,17,2°,27,1%*,1",1;

The positive and negative semicycles associated
with {y,} one of the form is 3%,3,2%,1,1%,1°,2",1".

1310

0

X))

the system (1), and consider the following cases:

Lemma 2.8: Let {( be a positive solution of

42:
43:
44
45:
46:
47:
48:

X Vo > land x,y, X, ¥, ¥, < 1
Xy, ya > land x,, X0, ¥, v, < 1
Xo Yo > land x,, X, ¥,y <1
X, Xo, Vo, Vo> land x,, ¥, <1
Xy Xgy Y2 Vo> land x, x, <1
X X4, Yo Vg > 1 and xy, y, < 1

Xy Xy Xop Voas Voo Vo > 1
If one of the above cases occurs, then

« Every positive semicycle associated with {x,}
of the system (1) consists of three or one
terms and negative semicycle associated with
{x,} of the system (1) consists of two or one
terms;

«  Every positive semicycle associated with {y,} of the
system (1) consists of three or one terms and
negative semicycle associated with {y,} of the
system (1) consists of two or one terms;

« The positive negative  semicycles
associated with {x,} one of the formis3",1,1°,
2,35,1,1°,2;

» The positive and negative semicycles associated
with {y,} one of the form is 37,1,17,2°,3%,1,17,2".

and

0

X))

the system (1), and consider the following cases:

Lemma 2.9: Let {( be a positive solution of

49: x,> 1 and X, X1y Yooy Vo1y Vo < 1
50:y.,,>1and x,, x_,, X, V2o Vo < 1
S51:y,>1and x,, x4, Xo, oy, Vo < 1
52:x,, x> lLand xy, v, vy, vy < 1
53: x4, Vs y > landx,, x., 1y, < 1
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

Xo» Yoas Vo> land xp, x,, ¥, <1
Xy Yarya > 1and x4y, X, ¥, < 1
X Xo, ¥ > Landx, yo, vy <1
X, Y, Yo > 1and x, xp, y, < 1
X5 Xoy Var Yo > land x,, ¥, <1
Xy Yoy Ya Yo > Land x, x, <1
X Xy Vi Yo > 1 and x5, ¥, <1
X5 X Yy Yo > Land xg, y., <1
X X5 X9 Y0, Yo > 1 andy, <1
Xy X Xoy Vo ¥y > land yy <1
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If one of the above cases occurs, then

e  Every positive semicycle associated with {x,} of the
system (1) consists of six or two terms and negative
semicycle associated with {x,} of the system (1)
consists of four or two terms;

»  Every positive semicycle associated with {y,} of the
system (1) consists of one term and negative
semicycle associated with {y,} of the system (1)
consists of five, three or one terms;

» The positive and negative semicycles associated
with {x,} one of the form is 67,2°,2",4"

« The positive and negative semicycles associated
with {y,} one of the form is 17,37,1%,5-,1%,1,,1°,1".

Theorem 2.10: The unique positive
(%, ¥) =(1,1) of the system (1) is globally asymptotically
stable.

equilibrium

Proof: From theorem 2.1. we know that the unique
positive equilibrium (%, ¥) = (1,1) of the system (1) is
locally asymptotically stable. So we must show that every

ositive solution ® of the system (1
p v u {(xn,yn)}n?z Y (1)

converges to(x,y)=(1,1) as n-«. Namely, we want to

prove.

limx,=x=1 , limy,=y=1I (29)

n—»00 n—>0

If the solution {( Xy )}00 of the system (1) is non-

n=-2
oscillatory about the unique positive equilibrium point
(x.¥)=(11), then according to Lemma 2.2. and Lemma

2.4. we know that the solution is either eventually equal to
(1,1) or an eventually positive one that has an infinite
number of terms and monotonically tends to the unique
positive equilibrium point (X,y)=(1,1) of the system (1).

Therefore, equation (29) holds. So we have to show that
equation (29) holds for strictly oscillatory solutions. For

this, let {(x v )}w be strictly oscillatory about
Ny p=—2

(x.¥)=(11) of the system (1). According to Lemma

2.3.(1) and Lemma 2.9., the {x,} solution of the system (1)
has the positive and negative semicycles of the form 67,2
2,47 Also, {y,} solution of the system (1) has the
positive and negative semicycles of the form 1°,3,1",5,1",1°
, 17,1". So we have the following sequences:

N
{xp+14n ) xp+14n+1’xp+14n+2’xp+14n+3’xp+14n+4’xp+14n+5}

N
{xp+14n+6 ’xp+14n+7} '{xp+14n+8’xp+14n+9}

- +
{xp+14n+10’xp+14n+11’xp+14n+12'xp+14n+13} '{yp+]4n}

- +
’{yp+1471+1’yp+14n+2’yp+14n+3} ’{yp+14n+4}

{yp+14n+5’yp+14n+6’yp+14n+7’yp+14n+8’yp+14n+9}

+ - +
r{yp+14n+10} ’{yp+14n+11} ’{yp+14n+12} {J’p+14n+13}

We now have the following assertions:

@)

xp+14n > xp+14n+] > xp+14n+2 > xp+]4n+3 > xp+14n+4
> xp+14n+5;xp+14n+7 > xp+14n+6 xp+14n+8 > xp+14n+9’.xp+14ﬂ+13
> X4 ane12 > Xprtanetl > Xpsranero A4

Vor1ans3 > Yprians2 = Yplant 1 Vpsians9 = Vprian+8
> Vprians7 2 Yprlant6 > Ypildnts

(i1)

Xpr1an+5%prianss > L X prtansrXpi1anss <1

Xps 149X pi1ans10 > 1 X p i 1ane13Xp e 1ane1s <1 and
VoirtanYpetane1 > LY prrans3V prrana <L
Voitansapstanss > Y piranso¥ psrancio <1
Vpitans10Ypetanett > LY parane1r prransiz <L
Vpitans12V petaneiz > LY pirane13Y priansig <1

inequality (I) can easily be seen from Lemma 2.3.(i).
forn =0,1,...

.  Xpitgnes TV prianes  Xprianes TV pilane3 1
p+14n+6 —
14X, sV prianss Xprtanes(IT Vprinss)  Xpitanes
X _ xp+1 7tV p+ldn+s xp+14n+7 +Y p+l4n+5 1
p+14n+8 —

1 +xp+]4n+7y p+l4n+s xp+14n+7(] + p+]4n+5) xp+14n+7

XpitaneoXprianeso > 1 a0d Xy g 13X 140004 <1 can easily

be shown.

_ yp+14n +xp+14n—2

yp+14n + xp+14n—2 1
Yorlantl = >

yp+14n (1 + xp+14n—2) yp+14n

14 Yy 14X pr1an—2

_ yp+]4n+3 +xp+14n+1 <

), ‘p+14n+3 +X p+14n+1 1
Y p+ldntd — <

1431 prianet Vortanss(1HXe1anat)  Vprtanss

yp+14n+4yp+14n+5 > 1’.yp+14n+9yp+14n+10 <1

Vpstans10Y petansit > LY prrans 11V prianssz <L

Vpstans12Vpriansiz > LY parane 13V priansrs <1
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can easily be shown. From inequality (i) and (ii),

1 1 1 1
Xptlantid < < < < <
Xp+lan+13  Xptian+12  Xprlanell  Xp+idn+10
1 1
Xpi1dn+9 <Xpiiants < < <Xy 1anes <Xpiignea <
pldnt?  Xp+lan+6

Xptant3 <Xpi1ans2 <Xpiians1 <Xpiidn

(30)

yp+]4n+14 < < yp+14n+12 < < yp+14n+1() <

p+14n+13 p+l4n+11

1 1 1 1 1

< < <
Yo+1an+9  Vp+lanss8  Vp+lant7  Vp+lane6  Vp+lan+s G1)

1 1 1

<
Yp+14n+2

<

<Yp+idn
yp+14n+1

Yp+ian+a <
p+14n+3

From equation (30) and (31), we can see that

and { are decreasing with

o0 0
%prraniis} }
{ pln+ldf, Yp+tan+14f,_,

lower bound 1. So the limits

(32)

lim x . 14n414 =Ly and lim y, 4,0, =1,
n—>0 n—0
exist and are finite. From equation (30) and (31), we obtain

lim Xpidn+9 = lim Xptiant8 = lim Xpidn+s =
n—>ow n—0 n—0

lm X pgpq = 1im X, gy 3= lmx, g, 5=
n—>00 n—>00 n—0

lim xp+14n+1 = lim xp+14n = L]
n—o n—o
lim Xpsldn+i3 = lim Xp+lan+12 = lim Xpslan+1l =
n—»o n—»0 n—o
li li li !
m xp+14n+10 = am xp+14n+7 = am xp+14n+6 -5
n—om n—om n—»o L

1

lim Vpt+ian+i2 = lim Vp+ian+10 = lim Vpt+lan+a = lim Voperan =Lo
n—»0 n—0 n—»0 n—»0
lim Yp+14n+i3 = lim Yp+lan+11 = lim Yp+1an+9 = lim Yp+i4n+8 =
Nn—>0 Nn—>»0 Nn—»0 Hn—>0

lim yp+14n+7 = lim yp+14n+6 = lim yp+14n+5 = lim yp+14n+3 =
n—»w n—® n—® n—x

1

lim yp+14n+2 =lim yp+]4n+1 =
n—»w0 n—w0 L2

1312

It suffices to verify that L, = L,. For this,

_ xp+]4n+13 +yp+14n+]1 . _ yp+14n+13 +xp+]4n+1]
Xptldntid T Vpilans14 Ty
X 1anr13Y priantil Y s 1ani13%ps 14ne11
(33)

If we take the limits on both sides of the equation
(33), we obtain

L, A
L= L, JLi c L= L, : L; (34)
I+—— I+——
L L, L, L;
Which imply that L, = L,. So we have shown that
lim xp+14n+k = lim yp+14n+k =1 fOVk € {0’»14} (35)
n—>0 n—>0

Similarly, from Lemma 2.3.(i) and Lemma 2.5., Lemma
2.6., Lemma 2.7. and Lemma 2.8. one can see that equation
(35) holds. Therefore, the proof is completed.
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