On Mannheim Curves in Terms of its Timelike Horizontal Biharmonic Partner Curves in the Lorentzian Heisenberg Group Heis³

Essin Turhan and Talat Körpinar

Fırat University, Department of Mathematics, 23119, Elazığ, Turkey

Abstract: In this paper, we study Mannheim curves in the Lorentzian Heisenberg group Heis³. We characterize Mannheim curves in terms of its timelike horizontal biharmonic partner curves in the Lorentzian Heisenberg group Heis³.

Mathematics Subject Classification (2000): 58E20

Key words: Heisenberg group • Biharmonic curve • Mannheim curves

INTRODUCTION

The notion of Mannheim curves was discovered by A. Mannheim in 1878. These curves in Euclidean 3-space are characterized in terms of the curvature and torsion as follows: A space curve is a Mannheim curve if and only if its curvature and torsion satisfy the relation.

$$\kappa(s) = \lambda(\kappa^2(s) + \tau^2(s))$$

for some constant λ .

Harmonic maps $f:(M,g)\rightarrow(N,h)$ between Riemannian manifolds are the critical points of the energy [1-7].

$$E(f) = \frac{1}{2} \int_{M} |df|^{2} v_{g}, \qquad (1.1)$$

and they are therefore the solutions of the corresponding Euler--Lagrange equation. This equation is given by the vanishing of the tension field

$$\tau(f) = \operatorname{trace} \nabla df. \tag{1.2}$$

As suggested by Eells and Sampson in [8], we can define the bienergy of a map f by

$$E_2(f) = \frac{1}{2} \int_M |\tau(f)|^2 v_g,$$
 (1.3)

and say that is biharmonic if it is a critical point of the bienergy [9].

Jiang derived the first and the second variation formula for the bienergy in [10], showing that the Euler-Lagrange equation associated to E_2 is

$$\tau_{2}(f) = -\mathsf{J}^{f}(\tau(f)) = -\Delta\tau(f) - \mathsf{trace}R^{N}(df, \tau(f))df$$

$$= 0 \tag{1.4}$$

Where J^f is the Jacobi operator of f. The equation $\tau_2(f) = 0$ is called the biharmonic equation. Since J^f is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, that is non-harmonic biharmonic maps [11-18].

In this paper, we study Mannheim curves in the Lorentzian Heisenberg group Heis³. We characterize Mannheim curves in terms of its timelike horizontal biharmonic partner curves in the Lorentzian Heisenberg group Heis³.

The Lorentzian Heisenberg Group Heis³: The Lorentzian Heisenberg group Heis³ can be seen as the space R³ endowed with the following multiplication:

$$(x, y, z)(x, y, z) = (x + x, y + y, z + z - xy + xy).$$

Heis³ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Lorentz metric g is given by

$$g = -dx^2 + dy^2 + (xdy + dz)^2$$

The Lie algebra of Heis has an orthonormal basis

$$\mathbf{e}_1 = \frac{\partial}{\partial z}, \mathbf{e}_2 = \frac{\partial}{\partial y} - x \frac{\partial}{\partial z}, \mathbf{e}_3 = \frac{\partial}{\partial x}$$
 (2.1)

for which we have the Lie products

$$[\mathbf{e}_2, \mathbf{e}_3] = 2\mathbf{e}_1, [\mathbf{e}_3, \mathbf{e}_1] = 0, [\mathbf{e}_2, \mathbf{e}_1] = 0$$

with

$$g(\mathbf{e}_1,\mathbf{e}_1) = g(\mathbf{e}_2,\mathbf{e}_2) = 1, g(\mathbf{e}_3,\mathbf{e}_3) = -1.$$

Proposition 2.1: For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above, the following is true:

$$\nabla = \begin{pmatrix} 0 & \mathbf{e}_3 & \mathbf{e}_2 \\ \mathbf{e}_3 & 0 & \mathbf{e}_1 \\ \mathbf{e}_2 & -\mathbf{e}_1 & 0 \end{pmatrix}, \tag{2.2}$$

where the (i, j)-element in the table above equals $\nabla_{\mathbf{e}_i} \mathbf{e}_j$ for our basis

$$\{\mathbf{e}_k, k=1,2,3\} = \{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}.$$

We adopt the following notation and sign convention for Riemannian curvature operator:

$$R(X, Y)Z = \nabla_{Y}\nabla_{Y}Z - \nabla_{Y}\nabla_{Y}Z - \nabla_{YY}Z.$$

The Riemannian curvature tensor is given by

$$R(X, Y, Z, W) = -g(R(X, Y)Z, W).$$

Moreover we put

$$R_{abc} = R(\mathbf{e}_a, \mathbf{e}_b)\mathbf{e}_c, R_{abcd} = R(\mathbf{e}_a, \mathbf{e}_b, \mathbf{e}_c, \mathbf{e}_d),$$

Where the indices a, b, c and d take the values 1,2 and 3.

$$R_{232} = 3R_{131} = -e_3,$$

 $R_{133} = R_{122} = -e_1,$
 $R_{233} = R_{121} = -3e_2,$

and

$$R_{1212} = -1, R_{1313} = -1, R_{2323} = -3,$$
 (2.3)

Timelike Biharmonic Curves In The Lorentzian Heisenberg Group Heis³: Let $\gamma: I \to Heis^3$ be a timelike curve on the Lorentzian Heisenberg group Heis³

parametrized by arc length. Let $\{T, N, B\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group Heis³ along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_T T$ (normal to γ) and **B** is chosen so that $\{T, N, B\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}} \mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}} \mathbf{N} = \kappa \mathbf{T} + \tau \mathbf{B},$$

$$\nabla_{\mathbf{T}} \mathbf{B} = -\tau \mathbf{N},$$
(3.1)

Where κ is the curvature of γ and τ is its torsion. With respect to the orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ we can write

$$\begin{split} \mathbf{T} &= T_1 \mathbf{e}_1 + T_2 \mathbf{e}_2 + T_3 \mathbf{e}_3, \\ \mathbf{N} &= N_1 \mathbf{e}_1 + N_2 \mathbf{e}_2 + N_3 \mathbf{e}_3, \\ \mathbf{B} &= \mathbf{T} \times \mathbf{N} = B_1 \mathbf{e}_1 + B_2 \mathbf{e}_2 + B_3 \mathbf{e}_3. \end{split}$$

Theorem 3.1: (see [18]) Let $\gamma: I \to Heis^3$ be a nongeodesic timelike curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. γ is a timelike non-geodesic biharmonic curve if and only if

$$\kappa = \text{constant} \neq 0,$$
 $\kappa^2 - \tau^2 = -1 + 4B_1^2,$
 $\tau' = -2N_1B_1.$
(3.2)

Corollary 3.2. (see [18]) Let $\gamma: I \to Heis^3$ be a nongeodesic timelike curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. γ is biharmonic if and only if

$$\kappa = \text{constant} \neq 0,$$

$$\tau = \text{constant},$$

$$N_1 B_1 = 0,$$

$$\kappa^2 - \tau^2 = -1 + 4B_1^2.$$
(3.3)

Theorem 3.3: (see [18]) Let $\gamma: I \to Heis^3$ be a non-geodesic timelike curve on Lorentzian Heisenberg group Heis³ parametrized by arc length. If $N_1 \neq 0$ then γ is not biharmonic.

Theorem 3.4: (see [18]) Let $\gamma: I \to Heis^3$ be a non-geodesic timelike biharmonic curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. If $N_1 \neq 0$, then

$$\mathbf{T}(s) = \sinh \phi_0 \mathbf{e}_1 + \cosh \phi_0 \sinh \psi(s) \mathbf{e}_2 + \cosh \phi_0 \cosh \psi(s) \mathbf{e}_3,$$
(3.4)

Where $\phi_0 \in \mathbb{R}$.

Mannheim Curves In The Lorentzian Heisenberg Group

Heis³: Consider a nonintegrable 2-dimensional distribution $(x, y) \rightarrow H_{(x, y)}$ in $Heis^3$ defined as $H = ker\omega$, where ω is a 1-form on $Heis^3$. The distribution H is called the horizontal distribution.

A curve $s \to \gamma(s) = (x(s), y(s), z(s))$ is called horizontal curve if $\gamma'(s) \in H_{\gamma(s)}$, for every s.

Lemma 4.1: Let $\gamma: I \rightarrow Heis^3$ be a horizontal curve and ω is a 1-form on Heis³ Then,

$$\omega(\gamma'(s)) = 0. \tag{4.1}$$

Proof: We use the equation of γ ,

$$\gamma'(s) = x'(s)\partial_x + y'(s)\partial_y + z'(s)\partial_y$$
 (4.2)

From (2.1) we have

$$\frac{\partial}{\partial x} = e_3, \frac{\partial}{\partial y} = e_2 + xe_3, \frac{\partial}{\partial z} = e_1. \tag{4.3}$$

Substituting (4.3) into (4.2) we obtain

$$\gamma'(s) = x'(s)e_3 + y'(s)e_2 + \omega(\gamma'(s))\partial_2$$

Since γ is assumed to be a non-geodesic horizontal curve we have (4.1).

Lemma 4.2: $\gamma : I \rightarrow Heis^3$ be a horizontal curve if and only if

$$\gamma'(s) = x'(s)e_3 + y'(s)e_2 + \omega(\gamma'(s)) = z'(s) + x(s)y'(s)$$
(4.4)

If $\gamma(s)$ is horizontal curve, then we have

$$\gamma'(s) = x'(s)e_3 + y'(s)e_2 = x'(s)\frac{\partial}{\partial x} + y'(s)\frac{\partial}{\partial y} - x(s)y'(s)\frac{\partial}{\partial z}$$

(4.5)

Using (2.1) and (4.5) we obtain

$$T = T_3 \frac{\partial}{\partial x} + T_2 \frac{\partial}{\partial y} + (T_1 - x(s)T_2) \frac{\partial}{\partial z}.$$
 (4.6)

Definition 4.3: Let $\gamma: I \to Heis^3$ be a unit speed nongeodesic curve. If there exists a corresponding relationship between the space curves γ and β such that, at the corresponding points of the curves, the principal normal lines of β coincides with the binormal lines of β , then β is called a Mannheim curve and γ a Mannheim partner curve of β . The pair $\{\gamma, \beta\}$ is said to be a Mannheim pair.

Theorem 4.4: Let $\beta: I \rightarrow Heis^3$ be a Mannheim curve and γ its timelike horizontal biharmonic partner curve. Then, the parametric equation of Mannheim curve β in terms of its timelike horizontal biharmonic partner curve γ of β are

$$\begin{split} x_{\beta}\left(s\right) &= \lambda \sinh[\kappa s + \rho] \cosh[\kappa s + \rho] (\sinh[\kappa s + \rho] + \rho_{1}s + \rho_{2}) - \\ \lambda (\cosh[\kappa s + \rho] - \left(\frac{1}{\kappa} \sinh[\kappa s + \rho] + \rho_{0}\right) \sinh[\kappa s + \rho]) \cosh[\kappa s + \rho] + \frac{1}{\kappa} \sinh[\kappa s + \rho] + \rho_{0}, \end{split}$$

$$y_{\beta}(s) = \lambda \sinh[\Re s + \rho](\cosh[\Re s + \rho] - \left(\frac{1}{\Re} \sinh[\Re s + \rho] + \rho_0\right) \sinh[\Re s + \rho]) - \lambda \cosh^2[\Re s + \rho].(\sinh[\Re s + \rho] + \rho_1 s + \rho_2) + \frac{1}{\Re} \cosh[\Re s + \rho] + \rho_4,$$

 $z_{\beta}(s) = \lambda \cosh[\Re s + \rho] \cosh[\Re s + \rho] - \lambda \sinh[\Re s + \rho] \sinh[\Re s + \rho]$

$$+\frac{1}{\Re}\sinh[\Re s + \rho] - \frac{1}{\Re}(-\frac{s}{2} + \frac{\sinh 2[\Re s + \rho]}{4\Re}) - \frac{\rho_0}{\Re}\cosh[\Re s + \rho] + \rho_5, \tag{4.7}$$

Where ρ , ρ_0 , ρ_1 , ρ_2 , ρ_4 , ρ_5 , are constants of integration.

World Appl. Sci. J., 10(11): 1374-1378, 2010

Proof: The covariant derivative of the vector field T is:

$$\nabla_{\mathbf{T}}\mathbf{T} = T_{1}^{'}\mathbf{e}_{1} + (T_{2}^{'} + 2T_{1}T_{3})\mathbf{e}_{2} + (T_{3}^{'} + 2T_{1}T_{2})\mathbf{e}_{3}. \tag{4.8}$$

From (3.4), we have

$$\nabla_{\mathbf{T}}\mathbf{T} = (\psi'\cosh\phi_0\cosh\psi(s) + 2\sinh\phi_0\cosh\phi_0\cosh\phi_0\cosh\psi(s))\mathbf{e}_2 + (\psi'\cosh\phi\sinh\psi(s) + 2\sinh\phi_0\cosh\phi_0\sinh\psi(s))\mathbf{e}_3. \tag{4.9}$$

Since $|\nabla_T T|$ we obtain

$$\psi(s) = \left(\pm \frac{\kappa}{\cosh \phi_0} - 2\sinh \phi_0\right) s + \rho, \tag{4.10}$$

Where $\rho \in \mathbb{R}$.

Thus (3.4) and (4.10), imply

$$\mathbf{T} = \sinh \phi_0 e_1 + \cosh \phi_0 \sinh \left[\Re s + \rho \right] e_2 + \cosh \phi_0 \cosh \left[\Re s + \rho \right] e_3, \tag{4.11}$$

Where $\Re = (\frac{\kappa}{\cosh \phi_0} - 2 \sinh \phi_0)$.

On the other hand, using (4.5) and (4.6) we have

$$T_1 = \sinh \phi_0 = 0. (4.12)$$

Thus, we choose

$$\cosh \phi_0 = 1, \Re = \kappa. \tag{4.13}$$

Using (3.1) in (4.11), we obtain

$$\mathbf{T} = (\cosh[\kappa s + \rho], \sinh[\kappa s + \rho], \cosh[\kappa s + \rho]) - x(s) \sinh[\Re s + \rho]).$$

From (2.1), we get

$$\mathbf{T} = (\cosh[\kappa s + \rho], \sinh[\kappa s + \rho], \cosh[\kappa s + \rho]) - \left(\frac{1}{\kappa} \sinh[\kappa s + \rho] + \rho_0\right) \sinh[\kappa s + \rho],$$

Where ρ_0 is constant of integration.

On the other hand, suppose that $\beta(s)$ is a Mannheim curve. Then by the definition we can assume that

$$\beta(s) = \gamma(s) + \lambda B(s) \tag{4.14}$$

From (3.1) and (4.11), we get

$$\nabla_{\mathbf{T}}\mathbf{T} = \kappa \cosh[\kappa s + \rho]\mathbf{e}_2 + \kappa \sinh[\kappa s + \rho]\mathbf{e}_3.$$

Where $\Re \kappa$

By the use of Frenet formulas, we get

$$\mathbf{N} = \frac{1}{\kappa} \nabla_{\mathbf{T}} \mathbf{T}$$

$$= \cosh[\kappa s + \rho] \mathbf{e}_2 + \sinh[\kappa s + \rho] \mathbf{e}_3.$$
(4.15)

Substituting (2.1) in (4.15), we have

$$\mathbf{N} = (\sinh[\kappa s + \rho], \cosh[\kappa s + \rho], \cosh[\kappa s + \rho](\sinh[\kappa s + \rho] + \rho_1 s + \rho_2)).$$

Noting that $T \times N = B$, we have

$$\mathbf{B} = (\sinh[\kappa s + \rho]\cosh[\kappa s + \rho](\sinh[\kappa s + \rho] + \rho_1 s + \rho_2) - (\cosh[\kappa s + \rho] - \left(\frac{1}{\kappa}\sinh[\kappa s + \rho] + \rho_0\right)\sinh[\kappa s + \rho])\cosh[\kappa s + \rho],$$

$$\sinh[\kappa s + \rho](\cosh[\kappa s + \rho] - \left(\frac{1}{\Re}\sinh[\kappa s + \rho] + \rho_0\right)\sinh[\kappa s + \rho]) - \cosh[\kappa s + \rho]\cosh[\kappa s + \rho](\sinh[\kappa s + \rho] + \rho_1 s + \rho_2),$$

$$(4.16)$$

$$\cosh[\kappa s + \rho] \cosh[\kappa s + \rho] - \sinh[\kappa s + \rho] \sinh[\Re s + \rho]$$
).

Next, we substitute (4.11) and (4.16) into (4.14), we get (4.7). The proof is completed.

REFERENCES

- Blair, D.E., 1976. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York.
- Caddeo, R. and S. Montaldo, 2001. Biharmonic submanifolds of S³, Internat. J. Math., 12(8): 867-876.
- Caddeo, R., S. Montaldo and C. Oniciuc, 2008. Biharmonic submanifolds of Sⁿ, Israel J. Math., 168: 201-220
- 4. Carmo M.P., 1976. Differential Geometry of Curves and Surfaces, Pearson Education.
- Chen, B.Y., 1991. Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17: 169-188.
- Dimitric, I., 1992. Submanifolds of E^m with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 20: 53-65.
- 7. Eells J. and L. Lemaire, 1978. *A report on harmonic maps*, Bull. London Math. Soc., 10: 1-68.
- Eells, J. and J.H. Sampson, 1964. Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86: 109-160.
- Hasanis, T. and T. Vlachos, 1995. Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math. Nachr., 172: 145-169.

- Jiang, G.Y., 1986. 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A, 7(2): 130-144.
- 11. Jiang, G.Y., 1986. 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7(4): 389-402.
- 12. Kuhnel, W., 1999. Differential geometry, Curvessurfaces-manifolds, Braunschweig, Wiesbaden.
- 13. Loubeau, E. and C. Oniciuc, 2007. On the biharmonic and harmonic indices of the Hopf map, Transactions of the American Mathematical Soci., 359(11): 5239-5256.
- 14. Matsuda, H. and S. Yorozu, 2003. *Notes on Bertrand curves*, Yokohama Math. J., 50(1-2): 41-58.
- Struik, D.J., 1961. Differential geometry, Second ed., Addison-Wesley, Reading, Massachusetts.
- Turhan, E., Completeness of Lorentz Metric on 3-Dimensional Heisenberg Group, International Mathematical Forum, 13(3): 639-644.
- 17. Turhan, E. and T. Körpınar, 2009. *Characterize on the Heisenberg Group with left invariant Lorentzian metric*, Demonstratio Mathematica, 42(2): 423-428.
- Turhan, E. and T. Körptnar, 2010. On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis³ Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 65a: 641648.