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On the Behavalor of Solutions of the System of Ratlonal Difference Equations
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Abstract: In this paper, we investigate the solutions of the system of difference equations
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INTRODUCTION

Recently, there has been great interest in studying
difference equation systems. One of the reasons for this
15 a necessity for some techniques which can be used in
investigating equations arising in mathematical models
describing real life situations in population biology,
economic, probability theory, genetics, psychology etc.
There are many papers with related to the difference
equations system for example,

In [1] Cinar studied the solutions of the systems of
the difference equations.
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In [2] Papaschinnopoulos and Schinas studied the
oscillatory behavior, the boundedness of the solutions,
and the global asymptotic stability of the positive
equilibrium of the system of nonlinear difference
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In [3] Papaschinnopoulos and Schinas proved the
boundedness, persistence, the oscillatory behavior and
the asymptotic behavior of the positive solutions of the
system of difference equations.
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In [4, 5] Ozban studied the positive solutions of the

system of rational difference equations
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In [6, 7] Clark and Kulenovié¢ investigate the global
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In [8] Camouzis and Papaschinnopoulos studied the

asymptotic stability » . = o
H

global asymptotic behavior of positive solutions of the
system of rational difference equations.
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In [9] Yang, Liu and Bai consided the behavior of the
positive solutions of the system of the difference
equations
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In [10] Kulenovi¢, Nurkanovié¢ studied the global
asymptotic behavior of solutions of the system of
difference equations.
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In [11] Zhang, Yang, Megson and Evans investigated
the behavior of the positive solutions of the system of
difference equations.
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In [12] Zhang, Yang, Evans and Zhu studied the
boundedness, the persistence and global asymptotic
stability of the positive solutions of the system of
difference equations.

Yon—m

Xy
> YH+1:A+ .
) Yn

X4l =4+

In [13] Yalcinkaya and Cmar studied the global
asmptotic stability of the system of difference equations.
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In [14] Yalcinkaya, Cinar and Atalay mnvestigated the
solutions of the system of difference equations.
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In [15] Yalcinkaya studied the global asmptotic
stability of the system of difference equations.
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In [16] Irdanin and Stevié studied the positive
solutions of the system of difference equations.
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Alsosee [15,17-20].
Tn this paper, we investigate the behavaior of the solutions of the difference equation system.
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(1.1)
Where the imitial conditions are arbitrary real numbers. This paper was motivated by [21] and [22].

Teorem 1: Let v, = a, v, = b, x;, = ¢, x_, = d be arbitrary real numbers and let {x, y,} be a solutions of the system (1.1).
Also, assume that ad# and ¢d # 1 Than all solutions of (1.1) are

d
——, u-—odd
x, =1 (ad -1)" (1.2)
eleb -1, n—even
b
———, u-—odd
y, =1 (cb-1)" (1.3)
alad -1Y", n—even
Proof: For n = 0,1,2,3 we have
X_; d
x = =
yox1 -1 ad-1
_ b
1= 1
py -1 eb-1
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for n = k assume that
d

and

V= a(ad-1)"
are true. Then for »n = k+1 we will show that (1.2) and (1.3) are true. From (1.1), whe have
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Teorem 2. Let y, = a, y, = b, x, = ¢, x, = d be arbitrary real numbers and let {x,,3,} be a solutions of the system (1.1). If
0 < a,b,c,d <1 then we have
lim xy, ;= lim y5, ; =+
and Hn—e0 n—ywo
lim x,, = lim y,, =0
R—30 5

Proof: From O < g,b,c,d <1l wehave 0 <ad <1 = 10 and 0 < ¢b <1 =-1< ¢k -1 < 0. Hence, we obtamn

d . 1 —o0, n—odd
lim x,,_; = lim =d lim Py =doo=
1y n—)w(gd,l) ”—W’(adfl) +00, M- even

s

and

b : 1 -0, n—odd
lim L ¥2p1= lim =5 lim —=bow=
n— n—w (cbfl) n—o (cbfl) +o0,  #H— ever

s

Smilarly, we have
lim xy, = ii_:[)rnloc(cb—l)” = c}}i_r)r:o(cb -1)'=c0=0
and
lim y,, = lim a(ad —1)" = a lim (ad -1)" =a.0=0
n

—w P P D

Teorem 3. Let y, = a, v, = b, x, = ¢, x_, = d be arbitrary real numbers and let {x, v,} be a solutions of the system (1.1).
If 1 < ad,cb< 2 then we have
lim x5, ;= im y,, ; =+
A0 R—
and
lim x,, = hm 1 Vo = 0
H—c0

Proof: From 1 <adeb<2wehavel <ad<2=0<ad-1<land1 <cb <2 =0 <¢b-1<1. Hence, we obtain

d ) 1 —co, d<0
lim x5, = lim ———=4d lim ———=d.w=
-0 n-)no(ad 1) n—)w(ad_l)” +00, d=0
and
b ) 1 —w, b<0
lim yq,1=1lim ———=5%1lim ———=bw=
o ’fﬂw(cbfl) f’H""(cbfl)’2 +oo, b0
Smilarly, we have
lim x,, = lim e(eb—1)" = ¢ lim (e6 -1)" = c0=0
Fl—yc0 H—0 A0
and
lim y,, = lim a(ad —1)" =a lim (ad -1)" =a.0=0
n—e0 1y n—yew D

Teorem 4: Let {x,v,} beasolutions of (1.1). If ad,cb €(—=-, —1) and ad,¢b €(2, += ) then we have

lim x5, ;= lim 5, ;=0
H—pc0 >0

lim x,, = hm 1 Yap = o0
f1—ye0
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Proof: From < <ad <0 = — <ad -1 < -1 we have

lim (ad —1)" =

H—pc0

{oo, 1 — odd

+o0, H—even

and from —< < ¢cb <0 = - < b -1 < -1 we have

- — odd
lim(cbl)”—{ e
R0 +co, H—even
fim xy, | = lim — 2 —dlim— '~ d0=0
H—c0

% (ad 1) 7% (ad—1)"

b 1

lim y,, = im ———=b lim ———=5.0=0

H—o0 n—>e0 (cb—l) n—® (cb—l)
Smilarly, we have
—oo, c¢>=0andn-—odd
+ 0 and # — odd
lim xy, = lim c{ch—1)" =c lim (cb—1}" =coo=] ~ © = 07O
B30 Ry B30 +o0, ¢ 0and - even

—co, ¢ =0 andn- even

—o0, @ 0andn—odd
+o0, <0and s — odd
lim yy, = im a(ad -1)" = a lim (ad —1)" = a.c0= ¢ T
730 30 n—ye0 +oo, a>0and n— even

—o0, a<0andn— even

Teorem 5: Let {x,y,} beasolutions of (1.1). If ¢,b,¢c,d € R and -1 < a,b,¢,d <0 then we have

lim Xap_1 = lim Yap1 =@
— L —ye0
and

lim x,, = lim y,, =0
H—>0 H—0

Proof: From -1 <gbc,d<Oweobtain0O<ad <1 = -1 <ad-1<0and 0 <eb <1 =-1 <cb-1<0 and we have

+o0, n—odd

—00  }1—even

lim x,,_; = lim d =d lim ! =d.w —{
R ”9"0(515171)” ’14""(.515171)}/i

and

+c0, n—odd

—00 p—even

lim y,, ;= lim b =5 lim ! =bow=
— i (ch 1Y @ (eh 1)

smilarly, we have

lim xy, = lim e{cb—1)" = ¢ lim (c6 ~1)" = c0=0

H—0 H—ye0 n—0

lim yy, = lim a(ad-1)"=alim (ad -1)" =a.0=0

= 20 >
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