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Abstract: Experiments can discover many unexpected things and highlighted issues for further detailed study.
The emerging of advanced products and processes are changing rapidly, customers are more demanding and
product life-cycle and time to market are shrinking. In this environment engineers and scientists need a strategic
approach to overcome this demand. Design of experiments (DOE) is the answer to these challenges. It allows
a researcher to understand what happen to the output (response) when the settings of the input variables in
a system are purposely changed. Unfortunately there are many scientists and engineers still practice the study
one-factor-at-a-time (OFAT). DOE offers a number of advantages over the traditional OFAT approach to
experimentation. One of the important advantages of DOE is that it has the ability to discover the presence of
interaction between the factors of the process, while OFAT does not. The objective of this paper is to
demonstrate how DOE approach works. This paper describes a case study on rubber glove manufacturing
process. It illustrates interaction between factors that cannot be found when varying only one factor at a time.
Model that describes the relationships between the inputs and output variables were then developed and used
to indicate areas where operations may be improved.
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INTRODUCTION of experimentation which could address the above

Knowledge can serve as a driver of change for any the game.
organization, businesses,  researchers  or  academicians. Design of Experiments or DOE is an alternative
In scientific and engineering disciplines, knowledge about answer to the above challenge. Despite its widespread
a product, process or system is often derived from use and economic impact, many scientists, engineers and
experimentation. Experiments can unveil many unexpected professionals are not aware of design experiments
things such as key opportunities and alert important approach. They perform one-factor-at-a-time experiment
issues for further detailed study. In today’s highly (OFAT) to examine or develop a product/process.
competitive environment, businesses cannot afford to However, OFAT can prove to be inefficient and unreliable
experiments by trial and error. This is because markets and leading to false optimal conditions. Moreover they often
technologies are changing rapidly, cost pressures are consist largely of trial and error, relying on luck, intuition,
increasing, customers are more demanding and product guesswork and experience for their success [1]. It is
life cycles and time-to-market are shrinking. However, the applicable to almost every industry. DOE is used to
key problems facing researchers are to ensure research identify the factors that cause changes in the response
outputs are delivered to the market place on time and and  predict  them  in  a  simple   mathematical   form.
ahead of competitor with minimum resources. A strategy These  designs  also allow the researcher/investigator to

challenges is obviously needed in order to stay ahead of
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study a large number of variables in a small number of the estimation of the factor effects is less precise because
experimental runs. They have proven to be extremely the experimental conclusions are drawn after collecting
useful tool in research and industrial development the data of each trial run by comparing the observed
applications. The use of DOE is most beneficial in outcome with previous result. Typically only 2 of the
multidisciplinary   application,   where   traditional observations in OFAT experiments are used to estimate
engineering analysis, simulation and verification are the effect of each factor. This form of experimentation can
difficult to achieve [2]. Experimental designs are often be regarded as trial and error which requires luck,
utilized during the development phase and the early experience and intuition for its success [5].
stages of manufacturing, rather than as a routine on-line Another pitfalls in this approach is that one will miss
or in-process control procedure. Also, these techniques the best settings if the factors interact  that  is  if  the
offer a potentially useful methodology for examining effect of a factor depends on the setting of other factor(s).
cause and effect relationships [3]. This suggests that an interaction exists. It indicates that

DOE uses statistical experimental methods to develop there is a relationship between the independent factors.
the best factor and level settings to optimize a process or An example of interaction between the factors. Suppose
a design. The statistical analysis of the data can be Z represents the event of stirring a cup of coffee and Y
performed quickly through the use of specialized software represents the event of adding sugar to a cup of coffee.
analysis packages such as Minitab, Design expert, JUMP The effect of these factors on sweetness of the coffee
etc. depends on the levels of both factors. Neither factor has

Why it is possible to study several factors an effect on its own but together they make the coffee
simultaneously and yet  obtained  useful  information. sweet. Factor Z and Y interact. This interaction can be
This will be discussed in more detailed in the next section. estimated.
This simultaneous look at the process variables can be a Another example of interaction occurs when fertilizer
big time-saver according to Sola optical plant manager in and water are added together. The combined effects are
California. The company claimed that the throughput of greater than either factor on their own. Using OFAT
its lens coating line after DOE implementation revealed approach interaction between factors cannot be estimated
optimal set-up and gained enough capacity. In this way because there is no information and this can misleading
the company avoided a $250K equipment purchase the optimal conditions of the process.
despite increase in lens demand.

The objective of this paper is to demonstrate how What  is   Design  of   Experiments   (DOE)   Approach:
DOE approach works. This paper describes a case study A designed experiment is a  modern  approach in
on rubber glove manufacturing process. It illustrates planning an experiment based on sound statistical
interaction between factors that cannot be found when practices. DOE constitutes a wide range of techniques
varying only one factor at a time. such as factorial design, fractional factorial design,

Experimentations method of changing multiple factors simultaneously to
One-Factor-at-A-Time  Approach  to  Experimentation: investigate their effect on one or more outputs in which
In the traditional one factor at a time (OFAT) experiments, combinations of factors (run) are allotted to one or more
no advanced statistical knowledge is needed in its experimental units. This typed of experiments is defined as
execution and data analysis. The OFAT approach is still a factorial experiment. In a full (complete) experiment
popular in many organizations when carry out experiments where every possible combination is run at least once,
to determine the setting of main factors [4]. Historically, information about individual and joint effects of the
scientists and engineers perform OFAT experiments by factors on the mean response could be obtained. These
changing one factor at a time and keeping others fixed. are called “main effect” and “interaction effect”,
This factor is varied until its best setting is found. It is respectively. However, as the number of factors in the
then fixed at this level. Next, the other factor is then factorial experiment increases, the number of runs for full
changed until its best setting is found and held constant replicate of the experiment rapidly exhausts the resources
at this setting. The whole process is repeated with of most experiments. For instance, to test 8 factors each at
another factor. One of the pitfalls of this approach is that 2 levels,  a full factorial design would require 2  = 256 runs.

response surface method, EVOP etc. It is a structured
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It is not possible to run all combinations. Fortunately, [6] Fundamentals  of  Experimental  Designs:  There  are
proposed the use of fractional factorial experiments in
such situations. These designs contain a fraction of the
runs in the complete factorial experiment, allowing the
estimation of all main effects and often lower order
interactions under the assumption of zero higher order
interactions. That is, a fractional experiment is a subset of
combinations from a full factorial experiment. Information
on higher order is discarded to accommodate extra factors
or to reduce the number of testing runs, for example a
screening experiment. However, this can lead to
difficulties which could distort our view of the main
effects. Then, in the late 1940’s, Galois field theory was
found to be useful in the construction of fractional
factorial experiments which gave orthogonal estimates of
the factorial effect. [7] presented the general theory of
symmetrical factorial experiments, leading [8] to further
improve upon and to propose the use of orthogonal
arrays in factorial designs. Experimental designs were
initially applied in agricultural experiments. It was then
introduced to the manufacturing industries, initially the
chemical industry, after the statistical designed
experiments had been further developed by statisticians
such as [9]. See also the publications of [10-12].

In fractional factorial experiments, “Plans” which
permit estimates of all main effects when all interaction
effects   are    zero    are   called   Resolution   III  plans.
The expression “Resolution R plan” was originated by
[13]. In the case where very few known lower-order
interactions are non-zero, using search designs are quite
useful. [14] proposed the theory of search designs that
allows estimates of lower-order interaction  effects  and
the search of non-zero higher-order interaction effects.
This method permits inference about those non-zero
higher-order interaction effects as well as on lower-order
interaction effects.

With so many confounding patterns, it is helpful to
have a way to classify  the  “degree  of  confounding”.
The term Resolution (R) describes the confounding with
a number that signifies the number of factors that are tied
together (confounded). A higher resolution number
indicates less confounding.

According to [15], resolution IV designs are used
more often because they seem to provide a good balance
of useful information versus the number of trials required.
For a small trial experiment, resolution III designs give a
lot of information but can be misleading if there are too
many confounding of factors. Resolution V designs are
probably too costly for many situations.

three basic principles in experimental design, namely,
replication, randomization and blocking. Replication is
simply repeating the basic experiment again. [16] reported
that replication has two essential properties; it allows to
estimate the experimental error and secondly, it permits to
obtain a more precise estimate, if the sample mean is used
to estimate the effect of a factor.

Randomization is very important principle. It is a
procedure for running the experiments in random order.
This is to avoid subjective decisions or bias and to
minimize the effects of unexpected or uncontrollable
changes.

Blocking is the process of grouping the trials of an
experiment into subgroups or “blocks”. Trials in the same
block are performed at the same time or day. The idea is to
improve the comparison of treatments by randomly
allocating  treatments  within  each block or subgroup.
The need to block an experiment can occur under a variety
of situations.

Benefits of Doe over Ofat Experimentation: DOE has
many advantages over one-factor-at-a-time (OFAT)
experimentation. It requires far few tests than OFAT for
valid results. This means less resources for the amount of
information obtained and crucial factor for an industry.
Approximation of the effect of each factor is more precise
through the use of more observations and thus reduced
variability in the experiment. It detects the interactions
among the factors considered for the experiment which
cannot be found when changing one factor at a time. It is
these interactions that most often prove to be the prime
breakthrough improvements.

Another important aspect of this approach is the
possibility   of    allowing    sequential   experimentation.
It allows researchers to study the effect of a factor when
the conditions of other factors vary. Thus, leads a better
understanding of how the existing process inputs
influence the performance of the process. In this way,
factors that are critical can be identified. Once, the best
settings for the critical factors are identified the
performance of the processes can be better optimize than
the OFAT.

In addition, it can be used as a tool for
troubleshooting a manufacturing process such as
determining  the    cause    of    high    rejection   rates.
This approach is simpler, more efficient and will need
fewer experimental runs to examine the impact of two or
more factors on a response of interest. The estimation
flexibility leads to substantial savings in run size.
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A Case Study: To illustrate how interactions are captured
in DOE, part of the experimentation data that had been
obtained by [17] will be used. [17] used DOE to plan an
experiment in a rubber glove production plant in Malaysia.
The objective was to determine the effects of 8 variables
on several important dimensions of rubber gloves.
Fractional factorial was employed. The experiment was
replicate twice, resulting in a total of 32 runs. All of the
runs were conducted in a random order.

The tensile strength of the rubber glove was one of
the critical dimension identified while three of the
variables investigated were latex temperature (B) in the dip
tank in degrees Centigrade, oven temperature before latex
dip (G) and curing temperature profile (A). All the three
factors were varied over two levels; a low and high level.
The low and high levels for latex temperature were 25-26
and 29-30 degrees Centigrade.

The statistical software package Minitab was used to
perform the regression modeling. The result of the
regression fit to the data is presented in Table 1 from
which deductions could be made. The analysis of
variance (ANOVA) of the linear regression fit is presented
in Table 2. The data was further analyzed using a
graphical method known as main effect plot and
interaction plot as shown in Table 3 and 4 respectively.
The regression method produced a model that relates
average tensile strength to latex temperature, curing
temperature profile, oven temperature and their
interaction.

Table 1 and 2 were analyzed to determine if the
different factor levels affect tensile strength. The analysis
of variance showed that the regression equation is very
significant at p<0.000. The mean square regression is
many times larger than the mean square error. The R  and2

R  (adjusted) values are 69.6% and 65.1% respectively.2

This means that the model could explain about 65.1% of
the variability in the response about the mean tensile
strength of 27.8MPa.

A complete response table for this data appears in
Table 3. Factors having strong effects on mean tensile
strength are shown in Table 1. We were tempted to
interpret the main effects separately which in this case
could be quite misleading. This is because of the presence
of interaction effect between factor B and G. The
estimated effects (based on contrast effects) of this
interaction are further summarized in Table 4.

A graphical representation of the estimated effects of
the interaction is shown in Figure 2. Figure 1 revealed that
when oven temperature after coagulant dip (G) and curing
temperature profile (A) are set at their low levels, the
highest     average     tensile    strength   was     achieved.

Table 1: Multiple regression result for mean tensile strength
Predictor Coefficient Standard Deviation t-ratio p-value
Constant 27.8462 0.1519 183.28 0.000
A -0.4609 0.1519 -3.03 0.005
G -0.8401 0.1519 -5.53 0.000
BD 0.3557 0.1519 2.34 0.027
BG 0.6203 0.1519 4.08 0.000

Table 2: Analysis of variance for mean tensile strength regression model
Source of Degree of Sum of Mean
Variation Freedom Squares Squares F-value p-value
Regression 4 45.742 11.436 15.48 0.000
Error 27 19.944 0.739
Total 31 65.686

Table 3: Main effects of factors A and G on mean strength
Factors
------------------------------------

Level A (MPa) G (MPa)
Average Response at High Level (2) 27.385 27.006
Average Response at Low Level (1) 28.307 28.686
Main Effect 0.915 1.680

Table 4: Interaction effect of BG on mean tensile strength
G  (Low) G  (High)1 2

29.346MPa 26.425MPa B  (Low)1

28.027MPa 27.587MPa B  (High)2

Fig. 1: Main effects for tensile strength

Fig. 2: Interaction effect for tensile strength
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Table 5: Estimation of 95% Confidence Intervals for mean tensile strength
Factors 95% Confidence Intervals Factors 95% Confidence Interval
CD 0.0178±0.689 DF 0.3428±0.689
C 0.0408±0.689 E 0.3927±0.689
B 0.0780±0.689 H 0.4884±0.689
BF 0.0948±0.689 BD 0.7114±0.689
AE 0.1781±0.689 A 0.9218±0.689
D 0.2656±0.689 BG 1.2406±0.689
F 0.2656±0.689 G 1.6847±0.689

However, a significant interaction was found between the
main controllable factors, latex temperature (B) and oven
temperature after coagulant dip (G). This interaction is
important. Although factor B is not significant by itself,
its interaction with factor G which is highly significant
requires B to be considered. Figure 2 indicates that setting
factors G and B at low is the optimal choice in order to
maximize the mean strength. Though BD interaction was
statistically significant at (p 0.027) was not considered
significant. This is because both B and D themselves were
not statistically significant. According to [18], if the main
factors are not significant, their interaction is not
significant. The rest of the factors B, C, D, E, F and H have
very small F-values  and  appear  to  be  insignificant.
They should be set at their most economical levels which
are at low levels, since these are the least expensive
levels. The best level settings or the preferred optimal
settings are A  B  C  D  E  F  G.1 1 1 1 1 1

We have also calculated the estimated standard error
by replacing ó  by its estimate S  given by the error mean2 2

square in the ANOVA Table 1 and substituting these in
equation below.

These intervals are approximately 95% Confidence
Intervals as depicted in Table 5. This analysis confirms
that there is some evidence that G, BG, A and BD
interaction are important as they are the only factor
estimates for which the intervals do not include zero.
These findings tally with Table 1.

The preferred model for mean tensile strength is a
simple mathematical model that depicts the relationship
between the tensile strength of the examination gloves
and the key factors and interactions which influence it.
This would assist in predicting the tensile strength for
various combinations of factor levels. The predicted
model is:

Mean Strength = 27.8 - 0.461A - 0.840G +
0.356BD + 0.62BG

The predicted response was calculated by
substituting the coded optimal setting of  the  factors.
This would yield a value of 30.08MPa. From the results it
suggests that the oven temperature before latex dip and
the curing temperature profile have a very strong impact
on the mean tensile strength of the examination gloves.

CONCLUSIONS

These investigations showed that the tensile
strength response was significantly affected by the oven
temperature before latex dip (G), curing temperature profile
(A) and BG interaction. It appears that factor G has the
largest influence, followed by factor A.

As we can see from the above discussion, a more
informed decision can be made regarding the preferred
settings of the controllable factors about the mean
response.  DOE   is   a   valuable   experimental  strategy
for   designing     and     conducting    experimentation.
The information gained from such experiments can be
used to improve the performance of the process and
product. The technical knowledge acquired from the
experiment has increased our understanding of the
process behavior and our ability to monitor the process.
This information is more reliable than that obtained from
OVAT. DOE should therefore be part of every scientists
and engineers’ toolbox.
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