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Spin-Orbital Effect in Hi-Density Low-Temp Plasma
with Ssc Potential in Hydrogen-Like Atoms
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Abstract: In this article Dirac’s solutions was used to study the spin-orbital interaction effects of an orbital

particle on iomic energy levels, using ssc potential for hydrogen like elements to find their energy levels,
particularly, their critical radii. In this review, a comparison of similar calculations y different studies made by

using simmilar potential, solving Schrodinger’s equation through different approaches, have been also

discussed.
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INTRODUCTION

A large group of physicists have studied
thermodynamic properties of high temperature low
density Plasma using Yukawa type (YT) potential, also
called static screened Coulomb’s potential (ssc). In this
case static screened implies that the time period of an
orbital particle ~ 107 sec, is considerably shorter than
the life time of an ionic state. This is very much correct for
plasma state. In high density low temperature case such
time difference becomes considerably large. Tt has been
shown that in a low density ligh temperature plasma [1-7],
such potential describes the two body interaction through
a chains of intermediary particle, just like among nucleons.
This potential also called Debye-Huckle (DH) potential, is
a sort of renormalized atom approach first used in the
works [8, 9] for copper, using mn Schrodinger’s quantum
wave equation. In this scheme one utilizes the free atom
wave function truncated at the Wigner-Seitz’s radius after
having renormalized it within this radial sphere. It can be
shown basing upon uncertainty principle (Ax. Ap ~) that
any attractive potential which approaches to zero faster
than ~r—*,as r approaches to infinity can have, at most, a
finite number of energy levels [5]. In this respect YT-
potential certainly qualifies this condition as it gives
potential with faster approach to zero than Coulomb’s
potential. The YT-potential also has the following
advantages. The degeneracy w. r. t the Azimuthal
quantum  number ¢ (due to cicular symmetry of
Coulomb’s potential), is removed and does not depend
upon the magnetic quantum number. The oscillatory

factor “exp (/D) of the YT potential keeps on disturbing
the equipotential circular orbits to remove degeneracy.
Here D serves as a screening radius. In other words
removed for

energy pressure non linearity s

thermodynamic properties. For any thermodynamic
calculations where partition function for an isolated atom
15 used, Coulomb’s potential can’t serve the purpose
because of its mfinite energy states, as the screening
radius becomes shorter i.e. D™D, the highest bound states
disappear [9]. This potential also describes the potential
of an impurity in metals and in semiconductors. In this
paper we shall use Dirac’s relativistic quantum theory
to account for spin —orbital effects for ionic energy
levels. Since in the derivation of Dirac’s equation spin-
orbital interaction is accounted for in the form i.e.

L.g-T" -1 GTZ . As in plasma field, physicists are trying

to include high-density quantum effects m ther classic
studies. Especially Cold Fusion plasma i.e. plasma due to
high density, catalyzed by muon is becomimng an
interesting field for future energy resources. In such case
fusion is carried out at low temperature that is why it is
called Cold fusion catalyzed by muon. By the introduction
of muon as an orbital particle, orbital radius is reduced
by 2068 times which 15 equivalent to high external
compression or high atomic density. We want to see how
this could improvise using Dirac’s quantum theory, since
equation accounts for spin-orbital effects
Further to calculate the thermodynamic
parameters 1.e. probability density, pressure, statistical
sum and Helmholtz free energy, either using Maxwell’s

Dirac’s
altogether.
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Table 1: a; = 0.529x10"%cm

zZ=1 m x Dy/ay
18,, 0 -1 3.5284
2811 1 9.0871
2Py 1 1 10.0880
=2 , X D a
18,, 0 -1 1.7652
2811 1 4.5432
2Py 1 1 5.0437
Table 2: Comparative analy sis

Sources D157
Hulthen and Laurikainen Variation method [14] 0.8399
Harris by variation method 0.8700
Roger-Graboske [3] 0.8398
Present results based on spin-orbital model 3.5284

distribution for ideal gas particles or Fermi-Dirac’s
distribution for the fermionic gas, one needs energy eigen
values. To calculate pressure either one can use hard-ball
approach or fluctuated volume approach. For fluctuated
volume approach one can use Gibbs distribution function
[12]. We end this mtroduction once again with remarks
that we are only after spin- orbital contribution to the
already calculated results as given i Table (1) and (2).
Since spin time period of an orbital particle is shorter than
the orbital time period. The static effects predommate over
dynamic especially for heavy electrons.

Theory and Mathematical Analysis: As in such dealings
most of the authors call ssc potential as Debye-Huckle
(DH) potential rather to Yukawa potential therefore for
onward discussion we shall also call it DH potential. The
mtroduced DH-potential can be found mn any fundamental
book on plasma and 1s given by [3]

2
V(r)= iexp (-/D), r<D
¥

N -
Z . 21282] 172
i=1pi

(1)

4w

KT

Where = [ (2)

is known as Debye’s ionic fields range or effective radius
mn plasma of electromc shell of an ion, pi — represents
density or number of particles per unit volume with Ze-
charge. The variable r shows the radial distance with
condition Ry< # < D, where R -nuclear radius of the 1on. If
we look at the relation (2) we can see that pi<T/I°. Even
a small variation n D would bring effective change in
results since in the said equation D appears in squared
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form and T shall be very low. Expression (1) for D =1,
reduces to the ordinary Coulomb’s potential of an 1solated
atom, only divided by a factor of e™' = 2, 17. As a result
potential would become faster than r° and consequently
stronger screening would take place. The screening is a
repulsive perturbation displacing the isolated energy
levels upwards and eventually in to the continuum [8]
as Debye length becomes smaller. For light elements
Bohr’s average radii of any energy level a, <D ~ 10~ cm
[5], the Debye length. There is a finite value of the
screening length D, (nn, §) for which the energy becomes
zero. In other words bound system moves to the
threshold of continuum. In general the DH-potential is
applicable for partially 1omzed plasma. For this purposed
different authors have used different approximation
methods. For example (1) first order perturbation method;
(2) variation method [13]; (3) even direct numerical
calculations [3, 14]. Schrodinger wave equation does not
account for the spin-orbital interaction and also the
exclusion considerations which can be accounted only
by Dirac’s quantum equation. Therefore for this purpose
assuming radial symmetry we shall solve Dirac’s radial
equation with DH-potential which can be givenin A =
h/me=1, system of units (see appendix 1) as follow [15];

(rf(e)) - f(rf(r)) +{e—1- V) (rg)) = 0

(rg()Y + (r(r)) - (e + 1- V(1)) (rf(r) = 0, 3)
¥

Where f{r) and g(r) are Dirac’s radial functions, &
— kinetic energy; and total energy mec® =1, as units being
used 1n this treatise. x-relativistic quantum number

defined as

{

These quantum conditions means both the spinners

x=-(#+1), ifi=¢+1/2] £ — orbital quantum number,

ifj=¢-1/2 | j—total quantum number,

x= 4,

(the possible orbits of the orbital particle) are not moving
inthe same orbit. Tf the spin (+1/2) practically moves on £,
then spm (-1/2) must be moving on ¢. Both will have
different critical Debye radii. Both of them will not be
ionized under the same pressure conditions. This is in
accordance with Pauli’s exclusion principle. This implies
that for relativistic case the volume demand for both the
orbitals would be more than that of Schrodinger’s case.
So we expect the Debye to Bohr’s radii ratio greater than
that of Schrodinger to Bohr’s ratio. Using potential (1)
i (3) and the system of umts as mentioned earlier,
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for which e’/4=c¢ and the ionization condition € = mc? =1,
we get a new set of Dirac’s equation as follow,

P - SR+ e MGy =0, B=1/D
¥ Ia

' x ) az e _ A
G(r)+rG() (28+re VR =10, @

Where F(r) = rf{r) and G(r) = rg(r). For non-1omzation
level solution, we must keep the terms (e -1) and (e +1) to
evaluate general energy expression. If we take fimte
nucleus atom, instead of point nucleus atom we have to
assume some nuclear model. Generally most of the
authors have used umform distribution of nuclear charge
over some spherical volume of radius R,. For which case
distribution of potential energy m side nuclear volume 1s
given as

—az 3

Ia
R, -

Vir) = (RfL
0

)

For this purpose one will have to solve the Dirac’s
set of radial equation (3) both for nuclear as well as extra
nuclear or ionic spaces. In this way found solutions are
sewed at the nuclear surface r= R, in accordance with
boundary condition [16].

FRo)in = o), ®)

Where (1) ,, represent solution from O< r < R,and
(1), m view of the Debye’s critical length from R, <r< D
and it is assume that bound particle (electron) wave
function does not penetrate in to the nuclear space. Due
to sewing of the two types of wave function at r=R, and
reducing the upper limits of volume radii from r= o to =D
a change in principal quantum number * n ” would take
place and in our it case is denoted by An. Thus the new
quantum number would be “n+An” with condition n >
An. The energy calculated on the basis of Dirac’s theory
considering pomt nucleus model with coulomb’s potential
is given by [15, 16].

(7

g, = m [1+{ 2 12
H+r

s

With condition ?:m principal quantum
number. Forx<0.0=0, 1... , called radial quantum number
and for x > 0,0'=1, 2... Ingeneral n'=n-1; where n=0, 1,
2.... for all cases. Since we as a first attempt, are interested
mamly for spmm—orbital contribution to the potential
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energy at critical level therefore we shall assume point
meodel for our all coming considerations. Solving the first
equation of (4) for G(r) we get

Gr= = (@)

™ F(r) - L Fi(r),
az az

and then differentiating G(r) w.r.tr we can get
G By e o &+ X e B o gy, ©
az az az

Using these values of G (r) and G'(r) in the second
equation of (4) we get.

2.2 2
“ e‘zﬁf-ﬁ-X—z)F(rFo,

(18)

F(i)+ 1+f "I zi"z i

Iz

Analytically it 15 not possible to solve such a
differential equation. We may have approximated solution
depending upon our requirement. For Schrodinger’s
equation the factor exp (-fr) can also be replaced
considering Bohr's classical quantum condition [17] only
with difference of units i.e. e’/41= &

n’h?

m azi(fr+1)

To derive this condition Rawls and Schulz used
Newton's Second Law 1e. centrifugal force around the
Bohr’s orbit was put equal to differential of DH-potential
wrt r and after simple mathematical manipulation

exp(— ffr)= (9)

equating it with Bohr's quantized angular momentum
but ultimately resorted to put Br =1 under the pretext of
bound state energy condition which is equivalent to the
use of first order perturbation in Coulomb’s potential to
eliminate the degeneracy. In fact the necessary and
sufficient condition for bound state n classical quantum
theory is that Sr<1 or r<D. Here we shall also use the first
order perturbation to make the problem easy 1.e expanding
the factor exp (-f in Taylor series as follow.
exp (— fpr=[1-pr+ ... ], (1
Usmg first order bound plane wave perturbation
given by (10), in (8) which is valid enough for our
conditien of critical Debye length as fr therefore (-f3r)
<<]. Keeping only the first term i.e. exp (-f#)" (1-5#) and
substituting new variables in differential Equation (8) to
transform it mto a some standard form that 1s:
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F(r) = 2 exp(%)w (r) we get

2 2
(B 4+4b)+ (a—ﬁ/2)+l/4;r

»

W)+ [

W) =0,
(1)

¥

Where a= (2 €az - 2¢°z* B xf), b=2€wz Band

y=+x? - a%s? Let £ ( ,ﬁ2+4b) 1"]’then equation (11)

can be further transformed exactly into the following
equation

1

W [ 1

Qa-B) 1 1/4-
gt & &

This form of the differential equation [18] is identical
to tl;at of the Whittaker’s differential equation with
k:osi—% ) . S

) J,m (x+1/2), which serves as principle
quantum number. For ¢ =0 and x =1; k=3/2. This function
satisfies the Whittaker’s equation for values of k
and y and for all values of £ except for —ve real values. If
Wy () is the solution of the said differential equation
then Wy, (-£) would also be solution of the same
differential equation. Since simultaneous change of signs
of (k, v), the equation (12) remamns unchanged or
symmetric. These are the basic solution of the said
equation. According to Maxwell’s electromagnetic
theory electric charges interact with each other either by
emission or absorption of photons. If the under study ion
15 surounded by relatively denser
communication range to other ions must be reduced.
That why Coulomb’s potential was replaced by
Debye-Huckel’s potential which accounts for density
dependence of interaction range. Since we are studying

2
Tw@=0 (2

media its

18

Dirac’s equation with condition € >mc*=1 i.e. at ionization
level so our r=D; therefore our electron wave function has
to oscillate between the boundaries R, < r< D, which in
quantum language are known as turning points. In Dirac’s
equation spectrum characteristics are defined by the
condition: if £ >mc” ‘the energy spectrum would be
contimuous and for & < mc’, the spectrum would be
discrete. A size criterion can also be used i.e. a state is
said to be not bound if its average radius exceeds the
average inter nuclear separation at a given density and
temperature. The ionization is achieved ate=mc’[15,
16]. This is what we have been following so for. For
larger values of mdices k we can have approximated
solution as given [14].

389

L

Jr

WKy m =02y + Dk —y—1/4 cos(2fEk — ym — 7w/ 4),

(13)

Quantity of special interest 1s the critical screening

for the ground state of D (1s) of the two body system in

the ssc type potential. This parameter has been computed

by a large group of physicists through a variety of

techniques. For our case function given by (13) must
reduce to zero at r=D;i.e.

cos(ZJg_k — - %) =0, (14)

This means our angle of equation (14) must fulfill the
condition.

ek =T =n+ ) s

Where n is an integer and after some simplification
from (15) we can easily get

(mry+ 3/4)7:]2 +dx+2

8az

D; (16)
To get the "relation (16) we first solved equation (15)
for £k and then squaring both sides and again solving
it under the condition when =D and also ignoring the
smaller terms. This relation gives the critical Debye’s radi
of nth orbital. For comparison of results with classical
Quantum calculations we write equation (16) as follow:

Dy [(n+y+3/4)7r]2+ dx+ 2

8z (17

4
To get this form we have divided by a, on both sides
of equation (16) and putting ¢ta, =1 as is admissible by the
system of units 4, = A _,
me
Results and Comparative Analysis: Critical radius
calculated using Coulomb’s potential under the same
conditions as mentioned above was given by [16] as
follow

. [+ y+3/ 0]

= n = integer
8az
(18)
Comparing (16) and (18) we can easily get
Zx+1
Di=r+ sfor x<0O, D, <1, 3 x>0, D, >1,
i daz * o=l a9



Middle-East J. Sci. Res., 6 (4): 386-391, 2010

Equation (19) shows that DD, < #, forallx <0 and I3,
> p, for all x > 0. This means that the critical radius for
Debye’s potential at total degeneracy (T=0) 1s lower than
the corresponding critical radii computed using coulomb’s
potential. In other words since pressure is indirectly
connected with volume radius therefore DH potential
gives lngher value of energy pressure as compared to
coulomb potential. This 15 due to reduction in available
volume space because of exclusion principle for fermions
in full or partial plasma. Although on compression outer
electrons mteract more repulsively with the interior
electrons which is out weighted largely by the increased
nuclear attraction as radial distance between orbital
electrons and the corresponding nucleus decreases

In Table (1) we have calculated values of D, in terms
23
ap

of 1n accordance with the equation (17), where
Z- element number a, Bohar’s radius (a,=0.529 x 107" cm).
In this table we have provided calculations only for Z = (1
and 2) and x = +1. In Table (2) we have provided the
comparative results calculated by different authors, using
different approaches to the same problem. The best
results in classical theory are considered to be those of
[3] * 0,8398” as given m Table (2) where as our result for
1s,, —state accounting for spin orbital interaction via
Dirac’s equation is "3,5284; which is in accordance with
suggested by [3] in the free energy for a given
composition of V and T using Maxwell’s statics
(classical). In high density plasma our results are almost
four times higher than the already calculated as given in
Table (2). Thus confirms the existence of the strongness of
spin orbital interaction on relativistic quantum theory
In term of, spin magnetic dipole moment, spin already
have twice effectiveness than orbital effect in classical
quantum theory, for example Finstein De Hass effect etc.
The mclusion of spm interaction to improvise the
dependence of energy on magnetic quantum number and
consequently Coulomb’s degeneracy is eliminated. From
the Table (1) we can also see that energy gaps between
1S, and 25, states for both Z= (1 & 2) 1s much larger
than the gaps between 25,, and 2P, states. This means
energy level is squeezed towards the bound states by the
external pressure. Therefore a sort of energy surface
tension is created. As is evident from eq(2) D* xT/p,. This
means for larger charges case D, would be smaller which
is confirmed by the comparison of values for Dy(Z=1)>
D,(Z=2). Another quantity of mterest 1s the maximum
bound quantum number n of the number of states.
Solving (16) for n we can get.
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BaZDi

TEZ

3
n, = —dx-2-y-

(20)

From equaton (20) we can get the maximum
umber of bound states comresponding to D, which
are 1inevitable to calculate the statistical
Since D, < r, for all x <0 this means that the number of
bound states in  Debye’s

SUIIL.

potential is numerically
The

disappearance of the uppermost bound states under

lower than those of Coulomb’s  potential
screening is by the reduction of separation between n
levels toward its continuum, to make the density of
states higher. Since spin-orbital interaction demands
for the available energy states value smaller than the
ordinary case because of exclusion principle, therefore the
number of bound states 1s expected to be less than for
any other approach.

ACKNOWLEDGEMENT

Atthe end T would like to express my appreciation to
our lab attendant Mr Qaisar Abbas who has composed
this article. He has good command of computer
COMPpOsing.

Appendix: In the system of umt m which Compton’s wave
length A=1. One Compton unit is = 3,862x107" cm.
Acceleration (a) _ M_Cz Foree (D) _ m2c? pressure (p)= 42
h - h ~ T4

h

electren charge ’= he [20].
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