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Abstract: The objective of this paper is a statistical analysis of the Chaudhry and Zubair [1]’s generalization
of the generalized inverse Gaussian distribution [cf. M. A. Chaudhry and S. M. Zubair [1], On A Class of
Incomplete Gamma Functions, with Applications, Eq., p. 195] and to draw some inferences on it. The model has
been reviewed first. Then, the statistical analysis of the model has been investigated. For this, several new
distributional properties of the distribution have been derived, including the reliability analysis, the estimation
of the parameters and computations of percentage points. We have used some real life-time data to show the
applications of the Chaudhry and Zubair [1]’s generalization of the generalized inverse Gaussian distribution.
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INTRODUCTION generalization of the generalized inverse Gaussian

The generalized inverse Gaussian (GIG) distribution the authors, no attempts have been made to the statistical
has received special attention in view of its wide analysis of the Chaudhry and Zubair [1]’s generalization
applications in many areas of research such as actuaries, of the generalized inverse Gaussian distribution (GGIGD)
biomedicine, demography, environmental and ecological since it appeared in their seminal work, viz.: Chaudhry and
sciences, finance, lifetime data, reliability theory and Zubair [1]. Motivated by these facts, we review the model
traffic data, among others. It was first proposed by first. Then, the statistical analysis of the model has been
Halphen in 1946; for details, see Perrault et al. [2] and investigated and some inferences are drawn on it. We
Seshadri [3]. Later on, it was studied by many authors and believe that the findings of this paper will be quite useful
researchers, such as Good [4], Tweedie [5, 6], Sichel [7], for the researchers and practitioners in various fields of
Folks and Chhikara [8], Wise [9], Barndorff-Nielsen [10], theoretical and applied sciences, such as biomedicine,
Jorgensen [11], Iyengar and Liao [12], Seshadri and demography, environmental science, ecological science,
Wesolowski [13], Wesolowski [14], Chaudhry and Zubair finance, lifetime and quantum plasmadynamics, among
[1, 15], Chou and Huang [16], Al-Saqabi et al. [17] and others.
Lemonte and Cordeiro [18], among others. For detailed The organization of the paper is as follows: In Section
and extensive discussions on the GIG distributions, the 2, we give a description the Chaudhry and Zubair [1]’s
interested readers are also referred to Johnson et al. [19], generalization of the generalized inverse Gaussian
Chhikara [20], Chhikara and Folks, [21], Seshadri [22, 23] distribution (GGIGD) model. Several new distributional
and Marshall and Olkin [24]. For the computations of the properties, including the reliability analysis, moments and
percentage points of the inverse Gaussian distribution, Shannon entropy are given in Section 3. The estimation of
see  Kallioras  and  Koutrouvelis  [25]  and  Koziol  [26]. the parameters and computations of percentage points are
For extensive tables for the order statistics and the related provided in Sections 4 and 5, respectively. We have used
calculations of moments of the inverse Gaussian some real life-time data to show the applications of the
distribution, please refer to Balakrishnan and Chen [27]. Chaudhry and Zubair (2002)’s distribution in Section 6.
Recently, Chaudhry and Zubair ([1], p. 195) introduced a We have provided the concluding remarks in section 7.

distribution (GGIGD). However, to the best knowledge of
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Chaudhry and Zubair’s Generalization of the Generalized Inverse Gaussian Distribution (GGIGD) Model: In what
follows, we will first provide the definition of the Chaudhry and Zubair [1]’s GGIGD and then will derive its several special
cases and distributional properties.

Probability Density Function of the Chaudhry and Zubair [1]’s GGIGD: For a continuous positive random variable
X, Chaudhry and Zubair ([1], p. 195) introduced a generalization of the generalized inverse Gaussian distribution with
its probability density function (pdf) given by

, (1)

where x > 0, v  0, a > 0, b  0, –  <  < , and

(2)

Denotes the normalizing constant and W  (z) denotes the Whittaker function for reals  and v and real argumentk,v

z; see, for example, Lebedev [28].
Using the Eq. 4.14, P. 197 of Chaudhry and Zubair [1], the normalizing constant is easily given by the following

formula.
C ( ; a, b, v)

(3)

where  denotes the Meijer G-function; see, for example, Mathai [29].

Remark 2.1 (Chaudhry and Zubair’s GGIGD in Terms of the Confluent Hypergeometric Function): It is known that
the Whittaker function, W  (z) is related to the confluent hypergeometric function ([ ], [ ]; z) by the following formula,v

Lebedev ([28], Eq. 9.13.16, p. 274), hence, using the above-mentioned formula, the equations (1) and (2) can easily
be transformed in terms of the Whittaker function. Thus, we have;

(4)

and

(5)

where x > 0, v  0, a > 0, b  0, –  <  < .

Remark 2.2 (Chaudhry and Zubair’s GGIGD in Terms of the Macdonald Function): Since it is known from Gradshteyn
and Ryzhik ([30], Eq. 9.235.2, p. 1062) that that the Whittaker function, W ,  (z) is related to the Macdonald function K0 µ µ

(z) by the following formulas.

that is,
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Hence, in view of above-mentioned formulas, the equations (1) and (2) can also be easily simplified in terms of the
Macdonald function. Thus, we have.

(6)
and

(7)

where x > 0, v  0, a > 0, b  0, –  <  < .

Remark 2.3 (Special Cases): Here, based on our key parameter v  0, by taking some of its values, we will derive some
special cases of the Chaudhry and Zubair (2002)’s GGIGD. These are given below:

Case (I) (when v = 0): Taking v = 0 in the Eq. (6), we have,

(8)

But, according to Melrose ([31], Eq. 2.4.37, P. 68), the Macdonald function of half-integer order can be expressed
in terms of a rational function times an exponential function, that is, that . Thus, using this formula
in the Eq. (8) and after simplifying, we have;

(9)

Integrating the Eq. (9) from x = 0 to x =  and using Gradshteyn and Ryzhik ([30], Eq. 3.471.9, p. 340), we have;

and, thus, Eq. (1.9) becomes,

(10)

which is the pdf of the generalized inverse Gaussian distribution (GIG); see, Good [4] and Jorgensen [19].

Case (II) (when v = 0 and  ): Taking  and re-parametrization of the parameters a and b in the Eq. (10), such

that  and , it is easily seen that the Chaudhry and Zubair [1]’s GGIGD, with the pdf (1), easily reduces

to the well-known two-parameter inverse Gaussian distribution, with the pdf given by;

Case (III) (Three-parameter Inverse Gaussian Distribution): As pointed outed out by Balakrishnan and Chen ([27], p.6),
“from  the  standard  two-parameter  form  of  the  inverse  Gaussian  distribution,  as  mentioned  in Case II above, a
three-parameter inverse Gaussian distribution can be obtained easily by introducing a threshold (location) parameter,

; see Cheng and Amin [32].” Thus, by the re-parametrization of the parameters a and b in the Eq. (10), such that
 and , its pdf is given as follows:
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where (>0): scale parameter;  (real): location parameter; µ(>0): location parameter; and  + µ is the mean, such that 
< x < + .

Case (IV) (when v = 1): Taking v = 1 in the Eq. (6), we have.

(11)

Again, as shown by Melrose ([31], Eq. 2.4.37, P. 68), we have . Thus, using this formula
in the Eq. (11) and after simplifying, we have 

(12)

Integrating the Eq. (12) from x = 0 to x = , using Gradshteyn and Ryzhik ([30], Eq. 3.471.9, p. 340) and simplifying,
we obtain the following formula for the normalizing constant:

(13)

Case (V) (when v = 2): Taking v = 2 in the Eq. (6), we have

(14)

According to Melrose ([31], Eq. 2.4.37, P. 68), we have . Thus, using this formula
in the Eq. (14) and after simplifying, we have;

(15)

Integrating the Eq. (15) from x = 0 to x = , using Gradshteyn and Ryzhik ([30], Eq. 3.471.9, p. 340) and simplifying,
we obtain the following formula for the normalizing constant:

(16)

Remark 2.4 (Other Distributional Relationships): As pointed out by Chaudhry and Zubair [1], it can easily be seen
that, by a simple transformation of the variable X or by taking special values of the parameters { , a, b, v} in equation
(1), a number of distributions, such as Weibull, gamma, inverse gamma, the hyperbolic, the inverse Gaussian, the
generalized inverse Gaussian, Erlang, exponential, Rayleigh and chi-square, are special cases of (1). Furthermore,
according to Chaudhry and Zubair [1], “the study of the probability model (1) will provide a unified approach to the
systematic analysis of the probability densities encountered in forestry, reliability theory and in demographic rates”.
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Possible Shapes of the Chaudhry and Zubair [1]’s GGIGD pdf: The possible shapes of the pdf (1) are given for some
selected values of the parameters in Figure 1 (a – c) below. The effects of the parameters can easily be seen from these
graphs. For example, it is clear from these plots that the distributions of the GGIGD are positively right skewed with
longer and heavier right tails for selected values of the parameters.

(a) {  1,1.5, 2, 2.5; a = 1,2,3; b = 1; v = 0} (b) {  = 1,1.5, 2,2.5; a = 1,2,3; b = 1; v = 1}

(c) {  = 1,1.5, 2,2.5; a = 1,2,3; b = 1; v = 0}

Fig. 1 (a – c): Plots of the Chaudhry and Zubair [1]’s GGIGD pdf (1)

Some Distributional Properties of the Chaudhry and Zubair [1]’s GGIGD Model: In what follows, we provide some
distributional properties the Chaudhry and Zubair [1]’s generalization of the generalized inverse Gaussian distribution.

Cumulative Distribution Function: The cumulative distribution function (cdf) corresponding to the pdf (1) is given by;
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(17)

which obviously cannot be integrated analytically in closed form and so should be evaluated numerically.
Furthermore, since it is known from Gradshteyn and Ryzhik ([30], Eq. 9.235.2, P. 1062) that ,

hence, in view of this formula, the equations (17) can be simplified in terms of the Macdonald function K  (z).v

Remark 3.1: Cumulative Distribution Function in terms of the Generalizations of the Generalized Incomplete Gamma
Functions: Chaudhry and Zubair [15, 1] introduced the following generalizations of the generalized incomplete gamma
functions:

(18)
and

(19)

where , x are complex parameters, b is a complex variable and K  (z) denotes the modified Bessel function of the secondv

kind or the Macdonald function for complex parameter v and complex argument z. Note that for v real and z positive, Kv

(z) is real. For details on the theory and analytical properties of Bessel functions, the interested readers are referred to
Watson [33]. Thus, by using the definitions (18) and (19), the cumulative distribution function (cdf), F  (x), the reliabilityX

function, R (x) and the hazard functions, h(x), corresponding to the pdf (1), are respectively given in terms of theX

generalizations of the generalized incomplete gamma functions by;

(20)

(21)
and

(22)

Possible Shapes of the Cumulative Distribution Function of the Chaudhry and Zubair [1]’s GGIGD: The possible
shapes of the cdf (20) of the Chaudhry and Zubair [1]’s GGIGD are given for some selected values of the parameters in
Figure 2 (a – c) below:

Reliability Analysis: As pointed out by Ahsanullah et al. [34], “the reliability analysis, such as the survival (or
reliability) and the hazard (or failure rate) functions, of lifetime distributions play important roles in modelling many
phenomena in the fields of biological, economics, engineering, physical and other pure and applied sciences. For a non-
repairable population, we define the failure rate as the instantaneous rate of failure for the survivors to time t during the
next instant of time”. Therefore, in what follows, motivated by the importance of the reliability modelling of real data in
the studies of the lifetime distributions, some reliability characteristics of the Chaudhry and Zubair’s GGIGD are
investigated. The reliability function R(x) and the hazard functions h(x) corresponding to the pdf (1) are respectively
given by;

(23)

and
(24)
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(a) {  = 1,1.5, 2,2.5; a = 1,2,3; b = 1; v = 0} left); (b) {  = 1,1.5, 2,2.5; a = 1,2,3; b = 1; v = 1} (right); and

(c) {  = 1,1.5, 2,2.5; a = 1,2,3; b = 1; v = 2} (bottom)

Fig. 2: Plots of the Chaudhry and Zubair [1]'s GGIGD cdf (20) for:
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It is obvious that the Eqs. (23) and (24) cannot be integrated analytically in closed forms and so should be evaluated
numerically. Furthermore, since it is known from Gradshteyn and Ryzhik ([30], Eq. 9.235.2, P. 1062) that

, hence, in view of this formula, the equations (22), (23) and (24) can be simplified in terms of

the Macdonald function K (z). Also, by using the definitions (20) and (21), the reliability function, R(x) and the hazardv

functions, h(x), corresponding to the pdf (1), are respectively given in terms of the generalizations of the generalized
incomplete gamma functions as follows:

(25)

and

(26)

Differentiating Eq. (24) with respect to x, we have,

(27)

where x > 0, v  0, a . 0, b  0, –  < < . To discuss the behavior of the failure rate function, h(x), letting h(x) = 0 in
Eq. (27), we observe that the nonlinear equation h(x) = 0 cannot be solved in a closed form. Therefore, it should be solved
numerically by Newton-Raphson method of iteration using some mathematical software such as Maple, Mathematica
or  R.  Furthermore,  as  we  observe  from  the Eq. (27) that h(x) is positive irrespective of the values of the parameters
{ , a, b, v}, it follows that the Chaudhry and Zubair’s GGIGD has the increasing failure rate (IFR) property.

Possible Shapes of the Hazard Function of the Chaudhry and Zubair [1]’s GGIGD: For some special values of the
parameters, the graphs of the hazard function (hf) (22) are illustrated in Figure 3 (a – c) below:

The effects of the parameters are obvious from these figures. The increasing and bathtub shape (both concave down
and concave up) behaviors of the hazard function (hf), h(x), are also evident from these Figures. Moreover, it is
sometimes useful to find the average failure rate function (AFR), over any interval, say, (0,t) that averages the failure rate
over the interval, (0,t), see, for example, Barlow and Proschan [35]. Thus, the average failure rate function (AFR) of the
Chaudhry and Zubair’s GGIG distribution, over the interval (0, t), is given by;

which in view of the expansion of logarithmic function as a power series, is seen to be positive irrespective of the values
of the parameters { , a, b, v}. It follows that the Chaudhry and Zubair’s GGIG distribution is increasing failure rate on
average (IFRA). Furthermore, a life distribution F(.) is new better than used (NBU) if R(x + y) R(x) R(y), x, y > 0 and
new worse than used (NWU) if the reversed inequality holds, see, for example, Barlow and Proschan [35]. We note that,
for the Chaudhry and Zubair’s GGIG distribution from the Eq. (21), since.
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and

(a) {  = 1,1.5, 2, 2.5; a = 1,2, 3; b = 1; v = 0} (left); (b) {  = 1,1.5, 2, 2.5; a = 1,2, 3; b = 1; v = 1} (right); 

and (c) {  = 1,1.5, 2, 2.5; a = 1,2, 3; b = 1; v = 2} (bottom).

Fig. 3: Plots of the Chaudhry and Zubair [1]’s GGIGD hf for: 
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It is easy see that R(x + y) R(x), R(y), which implies that the distribution of the Chaudhry and Zubair’s GGIG
distribution has the property of new better than used (NBU).

Remark 3.2: As pointed out by Chaudhry and Zubair ([1], p. 196), “the study of the cumulative distribution function
(cdf)  (20) and the reliability function (21) is important in statistics and reliability theory. In particular, the systematic
study of these functions will extend the usefulness of the generalized inverse Gaussian distributions in reliability and
life-testing situations with censored data; see Jorgensen [11]”.

Moments: Here, we derive various moments of the Chaudhry and Zubair [1]’s GGIG distribution.

Moment: For positive integer k, the kth moment of the random variable X of the Chaudhry and Zubair [1]’s GGIG
distribution is given by;

(28)

where x > 0, v  0 , a > 0, b  0, –  <  <  and 

(29)

Using the Eq. 4.14, P. 197 of Chaudhry and Zubair [1], the kth moment is easily given by the following formula:

(30)

where C is given as mentioned above and  denotes the Meijer G-function; see, for example, Mathai [29].

First Moment (or Mean): Taking k = 1, in the above-mentioned equation of the kth moment, the mean (or the first
moment) of the random variable X is easily given by;

(31)

kth (Central) Moment: The kth (central) moment, , of the random variable X of the Chaudhry and Zubair [1]’s GGIGk

distribution can easily be derived as follows:

(32)

where (E(X))  and E(X ) can be obtained from the equations (31) and (30), respectively. From the equation (32), one canj
k–j

easily obtain the second, third and higher central moments.

Variance: Taking k = 2 in equation (32), the variance is given by,
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(33)

Coefficients of Skewness and Kurtosis: By taking k = 3 and k = 4 in the equation (32), the third and fourth central
moments,  and , are respectively obtained as follows:3 4

(34)

and

(35)

Thus, using the above-mentioned expressions for  and , the measure of skewness,  and kurtosis, , are3 4 1 2

respectively given by;

(36)

and

(37)

where (E(X))  and E(X ) can be obtained from the equations (31) and (30), respectively.j
k–j

Using the software Maple in the above-mentioned equations, the numerical values of the first moment E(X), variance
, skewness  and kurtosis  are tabulated in the Tables 1-3 for some selected values of the parameters.2 1 2

Table 1: When v = 0
           Moments

Parameters E(X) 2 3 4 1 2

a=1, b=1,  = 1 1.8146 1.3371 2.4506 12.3991 1.5850 6.9352
a=2, b=1,  = 2 1.4517 0.5702 0.5386 1.7633 1.2510 5.4240
a=2, b=1,  = 1.5 1.2724 0.4715 0.4350 1.2940 1.3429 5.8208
a=3, b=1,  = 2.5 1.1850 0.3117 0.1970 0.4840 1.1316 4.9815

Table 2: When v = 1
           Moments

Parameters E(X) 2 3 4 1 2

a=1, b=1,  = 1 2.2916 1.9842 3.9155 23.5740 1.4009 5.9785
a=2, b=1,  = 1 1.6842 0.7360 0.7320 2.7274 1.1600 5.040
a=2, b=1,  = 1.5 1.4800 0.6200 0.6095 2.0674 1.2492 5.3825
a=3, b=1,  = 2.5 1.3276 0.3814 0.2522 0.6900 1.0707 4.7418



( ) ( ) ( )
0

( ) ,
!

k
i X k

X
k

t
M t E e E X

k

∞

=

= = ∑

( ) ( ) ( )
0

( ) ,
!

k
i t X k

X
k

i t
M it E e E X

k

∞

=

= = ∑

1i = −

( )

0

ln ( )1 , 1, 2, ,
r

X
r r r

t

d f t
r

i dt
=

 
= = 

  


( ) ( ) ( )

( )

10 0 0,
2

2exp

2, ; ,

x x
X

bI x u f u du C u au W du
u

C a x ab

+

 = = −  
 

=

∫ ∫

( ) ( ) ( ) [ ][ ln ( ] ln ( ) .X X X X XH f X E f X f x f x dx
∞

−∞

  = − = −  ∫

Middle-East J. Sci. Res., 28 (5): 420-440, 2020

431

Table 3: When v = 2
           Moments

Parameters E(X) 2 3 4 1 2

a=1, b=1,  = 1 3.1030 2.9652 5.8590 43.9553 1.1475 4.9993
a=2, b=1,  = 2 2.0711 0.9800 0.9900 4.3745 1.0210 4.5560
a=2, b=1,  = 1.5 1.8422 0.8537 0.8620 3.4892 1.0928 4.7874
a=3, b=1,  = 2.5 1.5706 0.4877 0.3287 1.0450 0.9651 4.3927

It is observed from the above-mentioned computations that the skewness, , is positive. Hence, the Chaudhry and1

Zubair’s GGIG distribution of the random variable X is positively skewed. Furthermore, based on our calculations, we
observe that the kurtosis,  > 3. Thus, the Chaudhry and Zubair’s GGIGD is heavy tailed.2

Moment Generating Function, Characteristic Function and rth Cumulant: It is easy to see that, for the Chaudhry and
Zubair’s GGIG distribution, the moment generating and characteristic functions of the random variable X are respectively
given by;

(38)

and

(39)

where  is the imaginary number, i  = –1 and E(X ) denotes the kth moment about the origin of the random variable2 k

X which can easily obtained from the equation (30). The rth cumulant, , of the random variable X having ther

characteristic function (39) is given by;

(40)

from which, by successive differentiation, it can be easily seen that.

 = E(X)= ,  = Var(X) = ,  = E [X – E (X)]  =  etc.,1 1 2 2 3 3
3

which can easily obtained by using the equations (31), (32) and (33). 

First Incomplete Moment: The first incomplete moment of the random variable X is given as;

Using the definition (18) of the generalizations of the generalized incomplete gamma function; see Chaudhry and
Zubair ([1], Eq. 4.8, p. 196).

Shannon Entropy: The Shannon entropy measure of a random variable X is a measure of variation of uncertainty and
has been used in many fields such as physics, engineering and economics, among others. According to Shannon [36],
the entropy measure of a continuous real random variable X is defined as;
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Thus, following the above-mentioned formula, the entropy of the Chaudhry and Zubair’s GGIG distribution is
obtained as follows:

(41)

where x > 0, v  0, a > 0, b  0,  –  <  <  and

(42)

Denotes the normalizing constant and W (z) denotes the Whittaker function for reals  and v and real argument z.k,v

It is obvious that the Eq. (41) cannot be evaluated in a closed form. Hence, one should use some computer packages
such as Maple, or Mathematica, or R, or MathCAD14, or other software, to tabulate the values of the Shannon entropy
measure for different values of the parameters.

Remark 3.1 (Special Cases): Here, we will derive some special cases of the Shannon entropy of Chaudhry and Zubair’s
GGIG distribution as follows: 

Case (I) (when v = 0): As mentioned in Section 2, when v = 0, the pdf in the Eq. (9) is given by;

where  is the normalizing constant. Using the Shannon entropy formula to the above-mentioned

expression for the pdf and applying the Gradshteyn and Ryzhik ([30], Eq. 3.471.9, p. 340) and simplifying, it is easily seen
that the expression for the entropy is obtained as follows:

(43)

Case (II) (when v = 0,  = 1): Taking  = 1 in the Eq. (43), the Shannon entropy is given by;

(44)

Case (III) (when ): In this case, the pdf (1) of the Chaudhry and Zubair’s GGIG

distribution reduces to the following:

(45)
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(a) {  = 0; v = 0; µ = 1} (left); and (b) {  = 0; v = 0; d = 1}(right) 

Fig. 4: Shannon Entropy Plots of the Chaudhry and Zubair [1]’s GGIGD for:

Using  the  Shannon  entropy  formula  to  the  above-said  pdf  (45),  applying  the  Gradshteyn  and Ryzhik ([30],
Eq. 4.356.1, p. 577), that is,  and the Gradshteyn and Ryzhik ([30], Eq. 3.471.9,

p. 340) and noting that K K  (Eq. 3.471.12, p. 340, Gradshteyn and Ryzhik 3[0], it is easily seen, after simplifying, that-v v

the expression for the Shannon entropy in this case is given by;

(46)

For some values of the parameters, using the Maple software, the graphs of the Shannon entropy (41) are sketched
in Figure 4 (a – b) below. From Figure 4 (a), it is observed that it is a monotonic increasing and concave down function
of d. From Figure 3.4 (b), we observe that it is a monotonic decreasing and concave up function of µ.

Percentile Points: Before any statistical applications of a given distribution, it is also important to know the percentile
points. For example, we may be interested in knowing the median (50%), 25%, or 75% quartiles. Similarly, it is necessary
to compute the 90%, 95%, or 99% confidence levels for other applications in order to assess the statistical significance
of an observation whose distribution is known. Thus, in view of these facts, in what follows, we have computed the
percentage points of the Chaudhry and Zubair [1]’s generalization of the generalized inverse Gaussian distribution
(GGIGD).

The 100 pth percentile or the quantile of order p, for any 0 < p < 1, of the Chaudhry and Zubair [1]’s GGIGD, with
the pdf f  (x) as in Eq. (1) is defined as a number x  such that the area under f (x) to the left of x  is p. In other words, xx p X p p

is any solution of the equation , where f  (x) denotes the cdf given by Eq. (20). Thus, using aX

Maple program, we have numerically solved the equation  and computed the percentage points

x  associated with the cdf, F(x ), of X for different sets of values of the parameters, which are provided in the Table 4p p

below.
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Table 4: Percentile Points of the Chaudhry and Zubair [1]’s GGIGD, X  GGIGD ( , a, b, v)
Percentiles p

Parameters 0.75 0.80 0.85 0.90 0.95 0.99
v = 0,  = 1 x 2.34291 2.58963 2.90240 3.33592 4.06376 5.71303p

a = 1, b = 1
v = 0,  = 1.5 x 1.61441 1.75828 1.93847 2.18494 2.59234 3.49920p

a = 2, b = 1
v = 0,  = 2 x 1.83945 1.99661 2.19245 2.45876 2.89566 3.85731p

a = 2, b = 1
v = 0,  = 2.5 x 1.48221 1.59689 1.73893 1.93079 2.24295 2.92190p

a = 3, b = 1
v = 1,  = 1 x 2.97570 3.27426 3.64846 4.16002 5.00244 6.83466p

a = 1, b = 1
v, = 1,  = 1.5 x 1.88497 2.04936 2.25406 2.53212 2.98745 3.98598p

a = 2, b = 1
v = 1,  = 2 x 2.13834 2.31583 2.53580 2.83296 3.31630 4.36588p

a = 3, b = 1
v = 1,  = 2.5 x 1.6629 1.78922 1.94509 2.15469 2.49367 3.22385p

a = 3, b = 1
v = 2,  = 1 x 3.98335 4.33629 4.77200 5.35660 6.29117 8.14912p

a = 1, b = 1
v = 2,  = 1 x 2.34191 2.53183 2.76627 3.08158 3.59156 4.68975p

a = 2, b = 1
v = 2,  = 2 x 2.61738 2.81890 3.06672 3.39874 3.93310 5.07558p

a = 2, b = 1
v = 2,  = 2.5 x 1.96161 2.10264 2.27564 2.50674 2.87731 3.66547p

a = 3, b = 1

Estimation of Parameters of the Chaudhry and Zubair [1]’s GGIGD: In what follows, we provide the estimation of the
parameters { , a, b, v} of the Chaudhry and Zubair (2002)’s GGIGD.

The Method of Moments: If  be an iid sample from a distribution with a m-dimensional parameter vector , then,

according to the method of moment (MOM), the estimator  is the solution of the following system of equations:

(47)

Thus, using the above-mentioned definition of MOM (5.1), we can obtain the first four moments from the Eq. (30)
of the kth moment, E(X) , of the Chaudhry and Zubair’s GGIG distribution by taking k = 1,2,3,4 and evaluating thek

respective expressions of the first four moments numerically. Then, the moment estimations of the parameters { , a, b,
v} can be determined by solving the system of four equations thus obtained by Newton-Raphson’s iteration method
and using some computer packages such as Maple, or Mathematica, or R, or MathCAD, or other software.

The Method of Maximum Likelihood: Given a sample {x }, i = 1,2,3,...,n, the likelihood function of the Chaudhry andi

Zubair’s GGIGD pdf (1) is given by . The objective of the likelihood function approach is to determine

those values of the parameters that maximize the function L. Suppose . Then, upon

differentiation, the maximum likelihood estimates (MLE) of the parameters { , a, b, v} can be obtained by solving the
maximum likelihood system of equations.
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(48)

Applying the Newton-Raphson’s iteration method and using some computer packages such as Maple, or
Mathematica, or R, or MathCAD14, or other software.

Remark 5.1: According to Balakrishnan and Chen ([27], p.2), “the estimation problem associated with the three-
parameter inverse Gaussian distribution is a difficult and challenging one”. As pointed out by Shakil et al. [37], when

, the maximum likelihood estimates of the parameters a and b can be found in Koutrouvelis et al. [38]. For the

maximum likelihood estimates of the parameters a, b and  of the generalized inverse Gaussian (GIG) distribution, the
interested readers are referred to Jorgensen [11]. For a three-parameter inverse Gaussian distribution, see Cheng and
Amin [32]. Thus, in view of these facts, the maximum likelihood estimates of the parameters { , a, b, v} of the Chaudhry
and Zubair’s GGIGD model may be possible to determine by solving the system of equations (48) by developing some
iteration methods and using some computer software, such as R, Maple, Mathematica, MathCAD 14, etc. Thus, since
the Chaudhry and Zubair’s GGIGD pdf (1) involves the Whittaker function and also as remarked by Chaudhry and Zubair
([1]. p. 196), “ the systematic study of these functions will extend the usefulness of the generalized inverse Gaussian
distributions in reliability and life-testing situations with censored data”, it is conjectured that the estimation of the
parameters { , a, b, v} of the Chaudhry and Zubair’s GGIGD distribution and its applications to real life-time data are also
a daunting task and are one of the major areas for further research.

Applications (Goodness of Fit Test of the Chaudhry and Zubair [1]’s GGIGD): In this section, the goodness of fit test
of the Chaudhry and Zubair’s GGIGD vis-à-vis gamma and lognormal distributions will be provided by considering two
real-world data examples.

Example 1: This example considers a random sample of the female white blood cell count (1000 cells /µL measured for
40 different aged adult females as reported in Triola ([39], p. 593), which are provided in Table 5. Based on this example,
we test the chi-squared goodness-of-fit of the Chaudhry and Zubair’s GGIG distribution to this data and compare it with
the gamma and lognormal distributions.

Table 5: Female White Blood Cell Count (1000 cells /µL Measured for 40 Different Aged Adult Females 
9.6, 7.1, 7.5, 6.8, 5.6, 5.4, 6.7, 8.6, 10.2, 4.1, 13.0, 9.2, 5.9, 8.0, 7.0, 9.1, 5.7, 4.6, 6.0, 5.7, 8.9, 6.4, 8.1, 7.9, 4.4, 4.9, 5.3, 5.3, 4.7, 9.8, 5.3, 4.9,
6.3, 5.4, 7.0, 13.5, 10.0, 10.3, 5.1, 6.6

The descriptive statistics of the above-mentioned white blood cell count data are computed in Table 6. Furthermore,
using the software minitab and statdisk, we have drawn the histogram and normal quantile plot of the data, which are
given in Figure 5. Moreover, the Ryan-Joiner Test (Similar to Shapiro-Wilk Test) of normality assessment of the white
blood cell count data is provided in Table 7.

Table 6: Descriptive Statistics: Female White Blood Cell Count
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Blood Cell Count 40 0 7.148 0.360 2.276 4.100 5.325 6.650 8.75 13.500
Variable Mode Skewness Kurtosis Excess Kurtosis
Blood Cell Count 5.3 1.0171 3.9602 0.7148

Table 7: Ryan-Joiner Test (Similar to Shapiro-Wilk Test) of Normality Assessment
Ryan-Joiner Test
Test statistic, Rp: 0.9566
Critical value for 0.05 significance level: 0.9715
Critical value for 0.01 significance level: 0.9597
Reject normality with a 0.05 significance level.
Reject normality with a 0.01 significance level.
Possible Outliers
Number of data values below Q1 by more than 1.5 IQR: 0
Number of data values above Q3 by more than 1.5 IQR: 0
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Fig. 5: Histogram (left); Normality Assessment (right)

From the Ryan-Joiner Test of Normality Assessment (Table 7) and Figure 5 (histogram and normal quantile plot),
it is obvious that the shape of the blood cell count data is skewed to the right and heavy tailed. This is also confirmed
from the skewness (1.0171) and kurtosis (3.9602) of the blood cell count data as computed in Table 6. Since fitting of a
probability distribution to adult female white blood cell count data may be helpful in predicting the probability or
forecasting the frequency of occurrence of the adult female white blood cell count, this suggests that ‘y’, the adult female
white blood cell count data, could possibly be modeled by some skewed distributions. As such we have tested the fitting
of the Chaudhry and Zubair’s GGIG distribution, gamma and lognormal distributions based on their goodness of fit to
the adult female white blood cell count data (as given in Table 5). For this, Maple 11 has been used for computing the
data moments, estimating the parameters and chi-square test for goodness-of-fit. The data moments computed are given
as follows:

The estimation of the parameters and chi-square goodness-of-fit test are provided in Tables 8 and 9 respectively.

Table 8: Parameter Estimates for the Female White Blood Cell Count Measurements Data Assuming Different Models
Chaudhry and Zubair [1]’s GGIGD X Lognormal (µ, ) X Gamma (k,, ),2

X GGIGD (a, a, b, v) (where –  < µ < +  and  > 0) (where shape k > 0 and rate  > 0)
GGIGD Model 1 ( )

GGIGD Model 2 ( )

GGIGD Model 3 ( )

Table 9: Comparison criteria (chi-square test for goodness-of-fit at the level of significance = 0.05)
Model
----------------------------------------------------------------------------------------------------------------------------------------------------------
GGIGD Model 2 GGIGD Model 3 Lognormal GGIGD Model 1 Gamma

Test statistic 0.3186827 0.3576475 0.4925972 0.5021621 1.1325701
Critical value 5.9914645 5.9914645 5.9914645 5.9914645 5.9914645
P-value 0.8527052 0.8362533 0.7816888 0.7779599 0.5676304
GOF Fitting Rank First Second Third Fourth Fifth
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              Fig. 5 (a) : Fitting of the pdfs of the Chaudhry and Zubair (2002) (GGIGD 1, 2 and 3), Lognormal and Gamma 
                             distributions to the Female White Blood Cell Count Measurements Data

From  the  chi-square  goodness-of-fit  test,  we observed that the Chaudhry and Zubair [1]’s models (GGIGD 1, 2 
and 3), lognormal and gamma distributions fit the female white blood cell count measurements data reasonably well. 
However, the Chaudhry and Zubair (2002)’s GGIGD Model 2 produces the highest p-value and smallest test statistic 
and therefore fitted better than GGIGD Model 1, GGIGD Model 3, lognormal and gamma distributions. Moreover, for 
the parameters estimated in Table 8, the Chaudhry and Zubair [1]’s models (GGIGD 1, 2 and 3), lognormal and 
gamma distributions have been superimposed on the histogram the female white blood cell count measurements data as 
shown in Figure 5 (a), from which we observed that the Chaudhry and Zubair [1]’s GGIGD Model 2 fits the female 
white blood cell count measurements data reasonably well.

Example  2:  This  example considers a random sample of 20 tree circumferences (in feet) as reported in Triola & Triola 
(P. 85, 2006), which are provided in Table 10. Based on this example, we tested the chi-squared goodness-of-fit of the 
three different cases of the Chaudhry and Zubair’s GGIG distribution and compared it with the gamma and lognormal 
distributions to this data.

Table 10: A random sample of 20 tree circumferences (in feet) as reported in Triola & Triola (P. 85, 2006)
1.8, 1.9, 1.8, 2.4, 5.1, 3.1, 5.5, 5.1, 8.3, 13.7, 5.3, 4.9, 3.7, 3.8, 4.0, 3.4, 5.2, 4.1, 3.7, 3.9

The descriptive statistics of the above-mentioned tree circumference data are computed in Table 11. Furthermore,
using the software statdisk and minitab, we have tested the normality of the tree circumference data by Ryan-Joiner Test
(Similar to Shapiro-Wilk Test), along with drawing a histogram of the data, which are given in Figure 7 and Table 12
below.

Table 11: Descriptive Statistics: Tree Circumferences
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Tree_Circumferen 20 0 4.535 0.593 2.651 1.800 3.175 3.950 5.15 13.700
Variable Skewness Kurtosis Excess Kurtosis
Tree_Circumferen 2.35 10.89 7.35
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Fig. 6: (left): Histogram; (right): Normality Assessment

Table 12: Ryan-Joiner Test of Normality Assessment
Ryan-Joiner Test
Test statistic, Rp: 0.8596
Critical value for 0.05 significance level: 0.951
Critical value for 0.01 significance level: 0.928
Reject normality with a 0.05 significance level.
Reject normality with a 0.01 significance level.
Possible Outliers
Number of data values below Q1 by more than 1.5 IQR: 0
Number of data values above Q3 by more than 1.5 IQR: 2

Table 13: Parameter Estimates for the Tree Circumference Data Assuming Different Models
Chaudhry and Zubair [1]’s GGIGD X Lognormal (µ, ) X Gamma (k,, ),2

X GGIGD (a, a, b, v) (where –  < µ < +  and  > 0) (where shape k > 0 and rate  > 0)
GGIGD Model 1 ( )

GGIGD Model 2 ( )

GGIGD Model 3 ( )

Table 14: Comparison criteria (chi-square test for goodness-of-fit at the level of significance = 0.05)
Model
-----------------------------------------------------------------------------------------------------------------------------------------------------------
GGIGD Model 2 GGIGD Model 3 Lognormal GGIGD Model 1 Gamma

Test statistic 2.7665 2.8378 5.8223 6.3784 7.2077
Critical value 7.8147 7.8147 7.8147 7.8147 7.8147
P-value 0.4290 0.4173 0.1206 0.0946 0.0656
GOF Fitting Rank First Second Third Fourth Fifth

From the Ryan-Joiner Test of Normality Assessment the tree circumference data as computed in Table 11. Since
(Table 12) and Figure 6 (histogram and normal quantile fitting of a probability distribution to the tree
plot) of the tree circumference data as shown above, it is circumference data may be helpful in predicting the
obvious that the shape of the tree circumference data is probability or forecasting the frequency of occurrence of
skewed to the right and heavy tailed. This is also the tree circumference, this suggests that ‘y’, the tree
confirmed from the skewness (2.35) and kurtosis (10.89) of circumferences, could possibly be modeled by some
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skewed distributions. As such we have tested the fitting [1], conducted some of its statistical analysis. We have
of the Chaudhry and Zubair’s GGIGD, gamma and reviewed the GGIGD model first and then established its
lognormal  distributions  based  on  their goodness of fit several new distributional properties, including the
to the  tree  circumference  data  (as  given in Table 10). reliability analysis, the estimation of the parameters and
For  this, Maple  11  has been used for computing the computations of percentage points. We have used two
data moments, estimating the parameters and chi-square real life-time data to show the applications of the
test for goodness-of-fit. The data moments are computed Chaudhry and Zubair [1]’s GGIGD model. It is hoped that
as   and .

The estimation of the parameters and chi-square
goodness-of-fit test are provided in Tables 13 and 14
respectively.

From the chi-square goodness-of-fit test, we
observed that the Chaudhry and Zubair (2002)’s models
(GGIGD 1, 2 and 3), lognormal and gamma distributions fit
the tree circumference data reasonably well. However, the
Chaudhry and Zubair [1]’s GGIGD Model 2 produces the
highest p-value and smallest test statistic and therefore
fitted better than GGIGD  Model  1,  GGIGD  Model  3,
lognormal  and gamma distributions. Moreover, for the
parameters estimated in Table 13, the Chaudhry and
Zubair [1]’s models (GGIGD 1, 2 and 3), lognormal and
gamma distributions have been superimposed on the
histogram of the tree circumference data as shown in
Figure 7, from which we observed that the Chaudhry and
Zubair [1]’s GGIGD Model 2 fits the tree circumference
data reasonably well.

Fig. 7: Fitting of the pdfs of the Chaudhry and Zubair
(2002) (GGIGD 1, 2 and 3), Lognormal and Gamma
distributions to the Tree Circumference Data

Concluding Remarks: In this paper, we have considered
the generalization of the generalized inverse Gaussian
distribution (GGIGD) introduced by Chaudhry and Zubair

the findings of this paper will be quite useful to the
researchers and practitioners in various fields of
theoretical and applied sciences. 
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