Middle-East Journal of Scientific Research 25 (4): 791-794, 2017 ISSN 1990-9233 © IDOSI Publications, 2017 DOI: 10.5829/idosi.mejsr.2017.791.794

On Cordial Labeling of Vertex Switching of Cycles

¹J. Jeba Jesintha and ²K. Subashini

¹PG Department of Mathematics, Women's Christian College, Chennai, India ²Department of Mathematics, Jeppiaar Engineering College, Chennai, India

Abstract: The *Cordial labeling* of graph *G* is an injection $f: V(G) \rightarrow \{0,1\}$ such that each edge uv in *G* is assigned the label |f(u) - f(v)| with the property $|v_i(0) - v_i(1)| \le 1$ and $|e_i(0) - e_i(1)| \le 1$, where $v_i(i)$ for i = 0, 1 denote the number of vertices with label *i* and $e_i(i)$ for i = 0, 1 denote the number of edges with label *i*. The graph which admits cordial labeling is called the *Cordial graph*. In this paper, we prove that the cycle of *n* copies of the class G of graphs is cordial, where the class G denotes the vertex switching of cycles.

Key words: Cordial labeling · Vertex switching · Cycle of graphs

INTRODUCTION

Graph labeling methods trace their origin to the graceful labeling introduced by Rosa [7] in 1967. For the past five decades variations in labeling methods have evolved. One such labeling method is the cordial labeling introduced by Cahit [4] in 1987. The Cordial labelingof graph G is an injection f: $V(G) \rightarrow \{0,1\}$ such that each edge uv in G is assigned the label |f(u) - f(v)| with the property $|v_{i}(0) - v_{i}(1)| \le 1$ and $|e_{i}(0) - e_{i}(1)| \le 1$, where $v_{i}(i)$ for i = 0, 1denote the number of vertices with label *i* and $e_i(i)$ for i =0, 1 denote the number of edges with label *i*. The graph which admits cordial labeling is called the Cordial graph. Various graphs are shown to be cordial. Andar et al. [1, 2, 3] have proved that the helms, closed helms, flowers, gears and sunflower graphs and multiple shells are cordial. Again in [1, 2, 3] the one point union of helms, flowers, gears, sunflower graphs are shown to be cordial. Cahit [5] has proved that every tree is cordial. In [5] Cahit has shown that all fans are cordial, the wheel W_n when n \neq 3(mod 4) is cordial, the complete graph K_n is cordial if and only if $n \le 3$, the bipartite graph K_{mn} is cordial for allm and n, the friendship graph $C_3^{(l)}$ is cordial if and only if $t \neq 0$ 2(mod 4). An extensive survey of cordial labeling methods is available in [6] by Gallian. In this paper, we prove that the cycle of graphs $C(n^{\circ}H)$ is cordial.

Main Results: In this section we first recall the definition for cycle, vertex switching of graph [8], cycle of graphs. Later we prove that the cycle of graphs $C(n^{\circ}H)$ is graceful.

Definition 1: A sequence of vertices $[v_0, v_1, v_2, ..., v_n, v_0]$ is a cycle of length n+1 if $v_{i+1}v_i \in E$, i=1, 2, 3, ..., n and $v_n v_0 \in iE$. A cycle of length n is denoted by C_n .

Definition 2: A vertex switching [8] of a graph G is the graph G_v which is obtained by taking a vertex v of G, removing all the edges incident to v and adding edges joining v to every other vertex which are not adjacent to v in G. We call v as the *switching vertex*.

Definition 3: A *cycle of graphs* is the graph obtained by replacing each vertex of the cycle C_n by connected graphs $G_1, G_2,...,G_n$. The cycle of graphs thus obtained is denoted by $C(G_1,G_2,...,G_n)$. Note that if $G_1, G_2,...,G_n = G$ and then the cycle of graphs is denoted by $C(n^\circ G)$.

Theorem: Let G be the cycle C_m and let H be the vertex switching graph of G. Then the cycle of graphs $C(n^{\circ}H)$ is cordial.

Proof: Let *G* be a cycle C_m with *m* vertices that are denoted as $v_1, v_2, ..., v_m$ in the anticlockwise direction. Let *H* be the vertex switching graph of the graph *G* with $v_1 \in G$ as the switching vertex. The graphs *G* and *H* are shown in Figure 1.

Let $C(n^{\circ}H)$ be the cycle of graphs that has been obtained by considering another cycle C_n whose vertices are denoted as $u_1, u_2, ..., u_n$ in anticlockwise direction and replacing each vertex of C_n by the graph H at the switching vertex v_1 . The graph $C(n^{\circ}H)$ is shown in

Corresponding Author: K. Subashini, Department of Mathematics, Jeppiaar Engineering College, Chennai, India. E-mail: k.subashinirajan@gmail.com. Middle-East J. Sci. Res., 25 (4): 791-794, 2017

Fig. 2: The graph $C(n^{\circ}H)$

Figure 2. In other words, each vertex u_i , $1 \le i \le n$ of the cycle C_n is identified with the switching vertex v_1 of H. As n copies of H are attached to the cycle C_n by the identification of u_i 's of C_n with v_1 of each of the n copies of H, we shall denote these identified vertices as $v_1^1 = u_1$ for the first copy of H, $v_1^2 = u_2$ for the second copy of H, $v_n^n = u_n$ for the nth copy of H. In general, $v_1^i = u_i$, $1 \le i \le n$ for the its copy of H. Now we rename the other vertices in the first copy of H in $C(n^\circ H)$ as $v_1^1_2...v_m^1$. The vertices in the second copy of H are renamed as $v_{2,j}^2 v_{3,...}^2 v_m^2$. This continues and the vertices in the last copy (that is nth copy) of H are renamed as $v_{2,j}^n v_{3,...}^n v_m^n$. Thus v_j^i represents the vertices in the ith copy of H for $1 \le i \le n, 2 \le j \le m$,

Note that if *p* denotes number of vertices in $C(n^{\circ}H)$ then p=mn and if *q* denotes the number of edges in $C(n^{\circ}H)$ then q=2n(m-2). Also note that the theorem is proved for $m \ge 5$ and $n \equiv 0 \pmod{2}$.

Middle-East J. Sci. Res., 25 (4): 791-794, 2017

Fig. 4: Cordial labeling of $C(4 \circ C_9)$

The vertices of $C(n^{\circ}H)$ are labeled as follows

Case 1: $m \equiv 1 \pmod{2}$

For $1 \le i \le n$ where $i \equiv 1 \pmod{2}$

$$f(v_j^i) = \begin{cases} 0 & 1 \le j \le m \quad j \equiv 0, 1 \pmod{4} \\ 1 & 1 \le j \le m \quad j \equiv 2, 3 \pmod{4} \end{cases}$$

For $1 \le i \le n$ where $i \equiv 0 \pmod{2}$

$$f(v_j^i) = \begin{cases} 1 & 1 \le j \le m \ j \equiv 0, 1 \pmod{4} \\ 0 & 1 \le j \le m \ j \equiv 2, 3 \pmod{4} \end{cases}$$

Case 2: $m \equiv 0 \pmod{2}$ $f(v_j^i) = \begin{cases} 0 & 1 \le i \le n \quad i \equiv 1 \pmod{2} \\ 1 & 1 \le i \le n \quad i \equiv 0 \pmod{2} \end{cases}$

For $1 \le i \le n$ where $i \equiv 1 \pmod{2}$

$$f(v_j^i) = \begin{cases} 0 & 2 \le j \le m \quad j \equiv 0,3 \pmod{4} \\ 1 & 2 \le j \le m \quad j \equiv 1,2 \pmod{4} \end{cases}$$

For $1 \le i \le n$ where $i \equiv 0 \pmod{2}$

$$f(v_j^i) = \begin{cases} 1 & 2 \le j \le m \ j \equiv 0,3 \pmod{4} \\ 0 & 2 \le j \le m \ j \equiv 1,2 \pmod{4} \end{cases}$$

From the above definition it is clear that $|v_{f}(0) - v_{f}(1)| \le 1$ and $|e_{f}(0) - e_{f}(1)| \le 1$. Therefore the graph $C(n^{\circ}H)$ is cordial. The above two cases are illustrated in Figure 3 and Figure 4.

CONCLUSION

In this paper we have proved that the graph $C(n^{\circ}H)$ is cordial. Further we intend to prove that the graph $C_{i}(G_{1}, G_{2},...,G_{n})$ where each $G_{i} = C_{m}$ with arbitrary m, is cordial. Also we intend to prove $C(G_{1}, G_{2},...,G_{n})$ is cordial for any other connected graphs $G_{i} 1 \le i \le n$.

REFERENCES

- Andar, M., S. Boxwala and N. Limaye, 2002. Cordial labelings of some wheel related graphs, J. Combin. Math. Combin. Comput., 41: 203-208.
- Andar, M., S. Boxwala and N. Limaye, 2002. A note on cordial labelings of multiple shells, Trends Math., pp: 77-80.
- Andar, M., S. Boxwala and N. Limaye, 2005. New families of cordial graphs, J. Combin. Math. Combin. Comput., 53: 117-154.
- Cahit, I., 1987. Cordial Graphs: A weaker version of graceful and Harmonic Graphs, Arts Combinatoria, 23: 201-207.
- Cahit, I., 1990. On cordial and 3-equitable labeling of graphs, Util. Math., 37: 189-198.
- Gallian, J.A., 2013. A dynamic survey of graph labeling, the Electronics Journal of Combinatorics, 16: 53-63.
- Rosa, A., 1966. On certain valuation of the vertices of a graph, Theory of graphs(International Symposium Rome, Gordan and Breach, N.Y and Dunod Paris, July, pp: 349-355.
- Vaidya, S.K., S. Srivastav, V.J. Kaneria and K.K. Kanani, 2010. Some cycle related cordial graphs in the context of vertex switching, Proceed. International Conf. Discrete Math. - 2008, RMS Lecturer Note Series, 13: 243-252.