On Cordial Labeling of Vertex Switching of Cycles

${ }^{l}$ J. Jeba Jesintha and ${ }^{2}$ K. Subashini
${ }^{1}$ PG Department of Mathematics, Women's Christian College, Chennai, India
${ }^{2}$ Department of Mathematics, Jeppiaar Engineering College, Chennai, India

Abstract

The Cordial labeling of graph G is an injection $f: V(G) \rightarrow\{0,1\}$ such that each edge $u v$ in G is assigned the label $|f(u)-f(v)|$ with the property $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(i)$ for $i=0,1$ denote the number of vertices with label i and $e_{\wedge}(i)$ for $i=0,1$ denote the number of edges with label i. The graph which admits cordial labeling is called the Cordial graph. In this paper, we prove that the cycle of n copies of the class G of graphs is cordial, where the class G denotes the vertex switching of cycles.

$\underline{\text { Key words: Cordial labeling • Vertex switching • Cycle of graphs }}$

INTRODUCTION

Graph labeling methods trace their origin to the graceful labeling introduced by Rosa [7] in 1967. For the past five decades variations in labeling methods have evolved. One such labeling method is the cordial labeling introduced by Cahit [4] in 1987. The Cordial labelingof graph G is an injection $f: V(G) \rightarrow\{0,1\}$ such that each edge $u v$ in G is assigned the label $|f(u)-f(v)|$ with the property $\mid v_{f}(0)-v_{f}(1) \leq 1$ and $\left|e_{f}(0)-e_{(}(1)\right| \leq 1$, where $v_{f}(i)$ for $i=0,1$ denote the number of vertices with label i and $e_{f}(i)$ for $i=$ 0,1 denote the number of edges with label i. The graph which admits cordial labeling is called the Cordial graph.Various graphs are shown to be cordial. Andar et al. [1, 2, 3] have proved that the helms, closed helms, flowers, gears and sunflower graphs and multiple shells are cordial. Again in $[1,2,3]$ the one point union of helms, flowers, gears, sunflower graphs are shown to be cordial. Cahit [5] has proved that every tree is cordial. In [5] Cahit has shown that all fans are cordial, the wheel W_{n} when n $\neq 3(\bmod 4)$ is cordial, the complete graph K_{n} is cordial if and only if $n \leq 3$, the bipartite graph $K_{m, n}$ is cordial for allm and n , the friendship graph $C_{3}{ }^{(t)}$ is cordial if and only if $t \neq$ $2(\bmod 4)$. An extensive survey of cordial labeling methods is available in [6] by Gallian. In this paper, we prove that the cycle of graphs $C\left(n^{\circ} H\right)$ is cordial.

Main Results: In this section we first recall the definition for cycle, vertex switching of graph [8], cycle of graphs. Later we prove that the cycle of graphs $C\left(n^{\circ} H\right)$ is graceful.

Definition 1: A sequence of vertices $\left[v_{0}, v_{1}, v_{2}, \ldots, v_{n}, v_{0}\right.$] is a cycle of length $n+1$ if $v_{i+1} v_{i} \in E, i=1,2,3, \ldots, n$ and $v_{n} v_{0}$ $\epsilon \mathrm{iE}$. A cycle of length n is denoted by C_{n}.

Definition 2: A vertex switching [8] of a graph G is the graph G_{v} which is obtained by taking a vertex $v \operatorname{of} G$, removing all the edges incident to v and adding edges joining v to every other vertex which are not adjacent to v in G. We call v as the switching vertex.

Definition 3: A cycle of graphs is the graph obtained by replacing each vertex of the cycle C_{n} by connected graphs $G_{1}, G_{2}, \ldots, G_{n}$. The cycle of graphs thus obtained is denoted by $C\left(G_{1}, G_{2}, \ldots, G_{n}\right)$. Note that if $G_{1}, G_{2}, \ldots, G_{n}=G$ and then the cycle of graphs is denoted by $C\left(n^{\circ} G\right)$.

Theorem: Let G be the cycle C_{m} and let H be the vertex switching graph of G. Then the cycle of graphs $C\left(n^{\circ} H\right)$ is cordial.

Proof: Let G be a cycle C_{m} with m vertices that are denoted as $v_{1}, v_{2}, \ldots, v_{m}$ in the anticlockwise direction. Let H be the vertex switching graph of the graph G with $v_{1} \epsilon$ G as the switching vertex. The graphs G and H are shown in Figure 1.

Let $C\left(n^{\circ} H\right)$ be the cycle of graphs that has been obtained by considering another cycle C_{n} whose vertices are denoted as $u_{1}, u_{2}, \ldots, u_{n}$ in anticlockwise direction and replacing each vertex of C_{n} by the graph H at the switching vertex v_{1}. The graph $C\left(n^{\circ} H\right)$ is shown in

Fig. 1: The graphs G and H

Fig. 2: The graph $C\left(n^{\circ} H\right)$

Figure 2. In other words, each vertex $u_{i}, 1 \leq i \leq n$ of the cycle C_{n} is identified with the switching vertex v_{1} of H. As n copies of H are attached to the cycle C_{n} by the identification of $u_{i}{ }^{\prime} s$ of C_{n} with v_{1} of each of the n copies of H, we shall denote these identified vertices as $v_{1}^{1}=u_{1}$ for the first copy of $\mathrm{H}, v_{1}^{2}=u_{2}$ for the second copy of $H, v_{1}{ }_{1}=u_{n}$ for the $\mathrm{n}^{\text {th }}$ copy of H. In general, $v_{1}{ }_{1}=u_{i}, 1 \leq$ $i \leq n$ for the $\mathrm{i}^{\text {th }}$ copy of H. Now we rename the other vertices in the first copy of H in $C\left(n^{\circ} H\right)$ as $v^{1}{ }_{2}, v_{3}{ }_{3}, \ldots v_{m}{ }^{1}$.

The vertices in the second copy of H are renamed as $v_{2}{ }_{2}, v_{3}{ }_{3}, \ldots v_{m}{ }^{2}$. This continues and the vertices in the last copy (that is $\mathrm{n}^{\text {th }}$ copy) of H are renamed as $v^{n}{ }_{2}, v^{n}{ }_{3}, \ldots v_{m}{ }^{n}$. Thus v_{j}^{i} represents the vertices in the $\mathrm{i}^{\text {th }}$ copy of H for $1 \leq$ $i \leq n, 2 \leq j \leq m$,

Note that if p denotes number of vertices in $C\left(n^{\circ} H\right)$ then $p=m n$ and if q denotes the number of edges in $C\left(n^{\circ} H\right)$ then $q=2 n(m-2)$. Also note that the theorem is proved for $m \geq 5$ and $n \equiv 0(\bmod 2)$.

Middle-East J. Sci. Res., 25 (4): 791-794, 2017

Fig. 3: Cordial labeling of $C\left(8^{\circ} C_{8}\right)$

Fig. 4: Cordial labeling of $C\left(4^{\circ} C_{9}\right)$

Case $1: m \equiv 1(\bmod 2)$

For $1 \leq i \leq n$ where $i \equiv 1(\bmod 2)$
$f\left(v_{j}^{i}\right)=\left\{\begin{array}{lll}0 & 1 \leq j \leq m & j \equiv 0,1(\bmod 4) \\ 1 & 1 \leq j \leq m & j \equiv 2,3(\bmod 4)\end{array}\right.$

For $1 \leq i \leq n$ where $i \equiv 0(\bmod 2)$
$f\left(v_{j}^{i}\right)=\left\{\begin{array}{lc}1 & 1 \leq j \leq m \quad j \equiv 0,1(\bmod 4) \\ 0 & 1 \leq j \leq m \quad j \equiv 2,3(\bmod 4)\end{array}\right.$

Case 2: $m \equiv 0(\bmod 2)$
$f\left(v_{j}^{i}\right)=\left\{\begin{array}{lll}0 & 1 \leq i \leq n & i \equiv 1(\bmod 2) \\ 1 & 1 \leq i \leq n & i \equiv 0(\bmod 2)\end{array}\right.$
For $1 \leq i \leq n$ where $i \equiv 1(\bmod 2)$
$f\left(v_{j}^{i}\right)=\left\{\begin{array}{lll}0 & 2 \leq j \leq m & j \equiv 0,3(\bmod 4) \\ 1 & 2 \leq j \leq m & j \equiv 1,2(\bmod 4)\end{array}\right.$
For $1 \leq i \leq n$ where $i \equiv 0(\bmod 2)$
$f\left(v_{j}^{i}\right)=\left\{\begin{array}{lll}1 & 2 \leq j \leq m & j \equiv 0,3(\bmod 4) \\ 0 & 2 \leq j \leq m & j \equiv 1,2(\bmod 4)\end{array}\right.$
From the above definition it is clear that $\mid v_{f}(0)-$ $v_{f}(1) \mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Therefore the graph $C\left(n^{\circ} H\right)$ is cordial. The above two cases are illustrated in Figure 3 and Figure 4.

CONCLUSION

In this paper we have proved that the graph $C\left(n^{\circ} H\right)$ is cordial. Further we intend to prove that the graph $C,\left(G_{1}\right.$, G_{2}, \ldots, G_{n}) where each $G_{i}=C_{m}$ with arbitrary m, is cordial. Also we intend to prove $C\left(G_{1}, G_{2}, \ldots, G_{n}\right.$ is cordial for any other connected graphs $G_{i} 1 \leq i \leq n$.

1. Andar, M., S. Boxwala and N. Limaye, 2002. Cordial labelings of some wheel related graphs, J. Combin. Math. Combin. Comput., 41: 203-208.
2. Andar, M., S. Boxwala and N. Limaye, 2002. A note on cordial labelings of multiple shells, Trends Math., pp: 77-80.
3. Andar, M., S. Boxwala and N. Limaye, 2005. New families of cordial graphs, J. Combin. Math. Combin. Comput., 53: 117-154.
4. Cahit, I., 1987. Cordial Graphs: A weaker version of graceful and Harmonic Graphs, Arts Combinatoria, 23: 201-207.
5. Cahit, I., 1990. On cordial and 3-equitable labeling of graphs, Util. Math., 37: 189-198.
6. Gallian, J.A., 2013. A dynamic survey of graph labeling, the Electronics Journal of Combinatorics, 16: 53-63.
7. Rosa, A., 1966. On certain valuation of the vertices of a graph, Theory of graphs(International Symposium Rome, Gordan and Breach, N.Y and Dunod Paris, July, pp: 349-355.
8. Vaidya, S.K., S. Srivastav, V.J. Kaneria and K.K. Kanani, 2010. Some cycle related cordial graphs in the context of vertex switching, Proceed. International Conf. Discrete Math. - 2008, RMS Lecturer Note Series, 13: 243-252.
