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Abstract: Sheik John (= Veera Kumar) introduced the notion of -closed sets (= -closed sets). Many
variations of -closed  sets  were  introduced  and  investigated.  In  this  paper, we introduce the notion of
m -closed sets and obtain the unified characterizations for certain families of subsets between closed sets and

-closed sets.
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INTRODUCTION denoted by SO(X) (resp .SPO(X)). The semiclosure of A

In 1970, Levine [1] introduced the notion of (resp. spcl(A)), is defined by;
generalized closed (g-closed) sets in topological spaces.
Recently, many variations of g-closed sets are introduced scl(A) =  {F: A F, X – F  SO(X)}, 
and investigated. In this paper, we introduce the notion of spcl(A) = { F: A F, X – F  SPO(X)}.
m -closed sets and obtain the basic properties,
characterizations and preservation properties. In the last Definition 2.2: A subset A of a topological space (X, )
section, we define several new subsets which lie between is said to be g-closed set [1] if cl(A) U whenever A U
closed sets and m -closed sets. and U is open in X.

Preliminaries: Let (X, ) be a topological space and Aa Definition 2.3: A subset A of a topological space (X, )
subset of X. The closure of A and the interior of A are is said to be -closed set [6] (or -closed set [7]) if
denoted by cl(A) and int(A), respectively. A subset A of cl(A) U whenever A U and U is semi-open in X. The
a space (X, ) is an -open [2] ( resp. preopen [3] ) set if complement of -closed set is said to be -open in X.
A int(cl(int(A))) ( resp. A int(cl(A))).  The  family  of all

-open sets in (X, ), denoted by  , is a topology on X Definition 2.4: A subset A of a topological space (X, )
finer than . The closure of a subset A in (X, ) is is said to be*g-closed set [8] if cl(A) U whenever A U
denoted by cl (A). and U is -open in X. The complement of *g-closed set is

Definition 2.1: A subset A of a topological space (X, )
is said to be Definition 2.5: A subset A of a topological space (X, )

Semiopen [4] if A cl(int (A)). and U is *g-open in X. The complement of gs-closed set
Semipreopen [5] if A cl(int(cl (A))). is said to be gs-open in X.

The complement of semi-open (resp. semipreopen) Definition 2.6: A subset A of a topological space (X, )
set is said to be semiclosed (resp. semi-preclosed). The is said to be pg-closed set [10] if spcl(A) U whenever
family of all semiopen (resp. semipreopen) sets in X is A U and U is semi-open in X.

[3] (resp. semipreclosure of A [5]), denoted by scl(A)

said to be *g-open in X.

is said to be gs-closed set [9] if scl(A) U whenever A U#

#

#

#
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Definition 2.7: A subset A of a topological space (X, ) Definition 4.2: Let (X, ) be a topological space and m an
is said to be -closed set [11] if cl(A) U whenever A U
and U is gs-open in X.#

Definition 2.8: A subset A of a topological space (X, )
is said to be s-closed set [12] if scl(A) U whenever
A U and U is gs-open in X.#

Definition 2.9: A subset A of a topological space (X, )
is said to besg-closed set [2] if scl(A) U whenever A U
and U is semi-open in X.

Definition 2.10: A subset A of a topological space (X, )
is said to be gs-closed set [1] if scl(A) U whenever A U
and U is open in X.

Definition 2.11: A subset A of a topological space (X, )
is said to be gsp-closed set [5] if spcl(A) U whenever
A U and U is open in X.

Throughout the present paper (X, ) and (Y, )
always denote topological spaces and f : (X, ) (Y, )
presents a function.

3.m-Structures:
Definition 3.1: A subfamily m P (X) is said to be ax

minimal structure [13]( brieflym-structure) on X if , X mx.

The pair (X, m ) is called a minimal space (m -space). Eachx

member ofm is said to be m-open and the complement ofx

an m-open set is said to be m-closed.

Remark 3.2: Let (X, ) be a topological space. Then m = ,x

SO(X) and SPO(X) are minimal structures on X.

Definition 3.3: Let (X, m ) be an m-space. For a subset Ax

of X, the m -closure of A and the m -interior of A arex x

defined in [14] as follows:

4.m -Closed Sets: In this section, let (X,  ) be a
topological space and m anm-structure on X. We obtainx

several basic properties of m -closed sets.

Definition 4.1: Let (X, ) be a topological space and m  anx

m-structure on X. A subset A of X is said to be m-semi
open [14] if A m-cl(m-int(A)). The family of all m-semi
open sets in X is denoted by mSO(X). The complement of
m-semi open set is said to be m-semiclosed.

x

m-structure on X. For a subset A of X, the m-semiclosure
of A [14] and the m-semiinterior of A, denoted by m-
scl(A) and m-sint(A), respectively are defined as follows:

m-scl(A) = {F:A F, F is m-semi closed in X}, 
m-sint(A) = {U :U A, Uism-semi open in X}.

Definition 4.3: Let (X, ) be a topological space and m  anx

m-structure on X. A subset A of X is said to be m-space.
A subset A of X is said to be;

m -closed if cl(A) U whenever A U and U is m-
semi-open,
m -open if its complement is m- -closed.

Remark 4.4: Let (X, ) be a topological space and Aa
subset of X. If mSO(X) = SO(X) (resp. ) and A is m -
closed , then A is -closed (g-closed).

Theorem 4.5: Let (X, mSO(X)) be an m-space and Aa
subset of X. Then x m-scl(A) if and only if U A  for
every m-semi open set U containing x.

Proof: Suppose there exists m-semi open set U containing
x such that U  A = . Then A X –U and X– (X–U) = U

mSO(X). Then by definition 4.2, m-scl(A)  X –U. Since
x U, we have x m-scl(A). Conversely, suppose that x

m-scl(A). There exists a subset F of X such that X – F
mSO(X), A F and x  F. Then there exists m-semi open

set X– F containing x such that (X– F)  A = .

Definition 4.6: An m-structure m on a nonempty set X isx

said to have property C [13] if the union of any family of
subsets belonging to m  belongs to m .x x

Example 4.7: Let X = {a, b, c, d}, m  = { , X, {a, b}, {a, c},x

{b, d}}, ={ , X, {a}, {d}, {a, d}, {a, b, d}}. Then m -
open sets are , X, {a}, {b}, {d}, {a, b}, {a, d} and {a, b,
d}}. It is shown that m O(X) does not have property C.

Remark 4.8: Let (X, ) be a topological space. Then the
families SO(X) and are all m-structure with property C.

Lemma 4.9: Let X be a nonempty set andmSO(X)an m-
structure on X satisfying property C. For a subset A of X,
the following properties hold:

A mSO(X) if and only if m-sint(A) =A, 
A is m-semi closed if and only if m-scl(A) =A, 
m-sint(A) mSO(X) and m-scl(A) is m- semi closed.
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Proposition 4.10: Let SO(X) mSO(X). Then the following closed. Therefore, we have X – int(A) = cl(X– A) X– F
implications hold: and hence F int(A). Conversely, let X –A G and

Closed m -closed -closed. hypothesis, we have X – G int(A) and hence cl(X– A) =

Proof: It is obvious that every closed set is m -closed. open.
Suppose that A is an m -closed set. Let A U and U
SO(X).  Since  SO(X) mSO(X),  cl(A) U  and hence A is Corollary 4.18: Let SO(X) mSO(X). Then the following

-closed. properties hold:

Example 4.11: Let X = {a, b, c }, m  = { , X, {c}} and Every open set is m -open and every m -open set isx

={ , X, {b}, {a, c}}. Then -closed sets are the power -open,
sets of X: m -closed are , X, {a}, {b}, {a, b} and {a, c} If A and B are m -open, then A B is m -open,
and closed sets are , X, {b} and {a, c}. It is clear that {b, If A is m -open and m-semi closed, then A is open,
c} is -closed but it is not m -closed and {a, b} is m - If A is m -open and int(A) B A, then B is m -open.
closed but it is not closed.

Proposition 4.12: If A and B are m -closed then A B is 4.14.
m -closed.

Proof: Let A B U and U mSO(X), Then A U and B U.
Since A and B are m -closed, we have cl(A B) = cl(A) 
cl(B)  U. Therefore, A B is m -closed.

Proposition 4.13: If A is m -closed and m-semi open,
then A is closed.

Proposition 4.14: If A is m -closed and A B cl(A), then
B is m -closed.

Proof: Let B U and U mSO(X). Then A U and A ism -
closed. Hence cl(B) cl(A) U and B is m -closed.

Definition 4.15: Let (X, mSO(X)) be an m-space and Aa
subset of X. Then mSemi-Frontier of A, mS-Fr(A), is
defined as follows: mS-Fr(A) = m-scl(A)  m-scl(X– A).

Proposition 4.16: If A is m -closed and A  U mSO(X),
then mS-Fr(U) int(X–A).

Proof: Let A be m -closed and A  U mSO(X). Then
cl(A) U. Suppose that x mS-Fr(U). Since U mSO(X), mS-
Fr(U) = m-scl(U)  m-scl(X– U)= m-scl(U)  (X–U)=m-
scl(U) – U. Therefore, x U and x cl(A). This shows that
x int(X–A) and hence mS-Fr(U) int(X– A). 

Proposition 4.17: A subset A of X is m -open if and only
if F int(A) whenever F A and A is m-semi closed.

Proof: Suppose that A is m -open. Let F A and F be m-
semi closed. Then X–A X– F mSO(X) and X –A is m -

G mSO(X). Then X – G A and X – G is m-semi closed. By

X –int(A) G. Therefore, X –A is m -closed and A is m -

Proof: This follows from propositions 4.10, 4.12, 4.13 and

Characterizations  of   m -Closed   Sets:   In  this
section,  let  (X, )  be  a  topological  space  and  m  anx

m-structure on X. We obtain some characterizations of
m -closed sets.

Theorem 5.1: A subset A of X is m -closed if and only
if cl(A)  F=  whenever A F =  and F is m-semi closed.

Proof: Suppose that A is m -closed. Let A  F =  and F
be m-semi closed. Then A X– F mSO(X) and cl(A) X–
F. Therefore, we have cl(A)  F = . Conversely, let A U
and U mSO(X). Then A (X– U) =  and X– U is m-semi
closed. By the hypothesis, cl(A)  (X– U) =  and hence
cl(A) U. Therefore, A is m -closed.

Theorem 5.2: Let SO(X) mSO(X) and mSO(X) have
property C. A subset A of X is m -closed if and only if
cl(A) –A contains no nonempty m-semi closed.

Proof: Suppose that A is m -closed. Let F cl(A) –A and
F be m-semi closed. Then F cl(A) and F  A and so
A X– F mSO(X) and hence cl(A) X – F. Therefore, we
have F X –cl(A). Hence F = . Conversely, suppose that
A is not m -closed. Then by Theorem 5.1,  cl(A) –U
for some U mSO(X) containing A. Since  SO(X)
mSO(X) and mSO(X)has property C, cl(A)–U is m-semi
closed. Moreover, we have cl(A) –U cl(A) –A, a
contradiction. Hence A is m -closed.

Theorem 5.3: Let SO(X) mSO(X) and mSO(X) have
property C. A subset A of X is m -closed if and only if
cl(A) –A is m -open.
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Proof: Suppose that A is m -closed. Let F cl(A) –A and space (X, m ) into a minimal space (Y, m ). Then the
F be m-semi closed. By Theorem 5.2, we have F =  and
F  It follows from proposition 4.16, cl(A) –A is m -open.
Conversely, let A U and U mSO(X). Then cl(A)  (X–
U)  cl(A) –A and cl(A) –A is m -open. Since
SO(X) mSO(X) and mSO(X) has property C, cl(A)  (X–
U) is m-semi closed and by proposition 4.17, cl(A)  (X–
U) int(cl(A) – A). Now int(cl(A) – A )= int( cl(A))
int(X– A) cl(A)  int(X– A) = cl(A)  (X– cl(A)) =
Therefore, we have cl(A)  (X– U)=  and hence cl(A) U.

This shows that A is m -closed.

Theorem 5.4: Let (X, mSO(X)) be an m-structure with
property C. A subset A of X is m -closed if and  only  if
m-scl({x})  A  for each x  cl(A).

Proof: Suppose that A is m -closed and m-scl({x}) A
=  for some x  cl(A). By lemma 4.9, m-scl({x}) is m-semi
closed and A X–(m-scl({x})) mSO(X). Since A is m -
closed, cl(A)  X–(m-scl({x})) X– {x}, a contradiction,
since x  cl(A). Conversely, suppose that A is not m -
closed. Then by Theorem 5.1,  cl(A) –U for some U 
mSO(X) containing A. There exists x  cl(A) –U. Since x 
U, by Theorem 4.5, m-scl({x})  U =  and hence m-
scl({x})  A m-scl({x})  U = . This shows that m-
scl({x})  A =  for some x  cl(A). Hence A is m -
closed.

Corollary 5.5: Let SO(X) mSO(X) and mSO(X) have
property C. For a subset A of X, the following properties
are equivalent:

A ism -open,
A– int(A) contains no nonempty m-semi closed set,
A– int(A) is m -open,
m-scl({x})  (X-A)  for each x  A-int(A). 

Proof: This follows from Theorems 5.2, 5.3 and 5.4.

Preservation theorems
Definition 6.1: A function f: (X, m )  (Y, m ) is said to bex y

M-semi continuous if f (V) is m-semi closed in (X,1

m ) for every m-semi closed V in (Y, m ),x y

M-semi closed if for each m-semi closed set F of (X,
m ), f(F) is m-semi closed in (Y, m ).x y

Theorem 6.2: LetmSO(X) be an m-structure with property
C.  Let  f: (X, m )  (Y, m ) be  a  function  from   a  minimalx y

x y

following are equivalent:

f is M-semi continuous, 
f (V) mSO(X) for every V mSO(Y).1

Proof: Assume that f: (X, m )  (Y, m ) is M-semix y

continuous. Let V mSO(Y). Then V  ism-semi closed inc

(Y, m ). Since f is M-semi continuous, f (V ) is m-semiy
1 c

closed in (X, m ). But f (V ) = X – f (V). Thus X– f (V)x
1 c 1 1

is m-semi closed in (X, m ) and so f (V) is m-semi open inx
1

(X, m ). Conversely, let for each V mSO(Y), f (V)x
1

mSO(X). Let F be any m-semi closed in (Y, m ). Byy

assumption, f (F ) ism-semi open in (X, m ). But f (F )=1 c 1 c
x

X– f (F). Thus X– f (F) is m-semi open in (X, m ) and so1 1
x

f (F) is m-semi closed in (X, m ), Hence f is M-semi1
x

continuous.

Lemma 6.3: A function f: (X, m )  (Y, m ) is M-semix y

closed if and only if for each subset B of Y and each U 
mSO(X) containing f (B), there exists V mSO(Y) such1

that B V and f (V) U.1

Proof: Suppose that f is M-semi closed. Let B Y and U 
mSO(X) containing f (B). Put V= Y – f(X –U). Then V is1

m-semi open in (Y, m ) and f (V)  f (Y)–(X– U)=X– (X–y
1 1

U)=U.Also, since f (B) U, then X– U f (Y– B) which1 1

implies f(X– U) Y–B and hence B V. Hence we obtain V
mSO(Y) such that B V and f (V) U. Conversely, let F1

be any m-semi closed of (X, m ). Set f(F) = B, then Fx

f (B) and f (Y– B) X– F mSO(X). By the hypothesis,1 1

there exists V mSO(Y) such that Y– B V and
f (V) X–F and so F  f (Y– V). Therefore f(F)  Y– V.1 1

Hence, we obtain Y– V B = f(F) Y– V. Therefore f(F) =
Y– V is m-semi closed in (Y, m ). Hence f is M-semi closed.y

Theorem 6.4: Iff: (X, m )  (Y, m ) is closed and f: (X, m )x y x

 (Y, m ) is M-semi continuous, where mSO(X) hasy

property C, then f(A) is m -closed in (Y, m ) for each m -y

closed set A of (X, m )x .

Proof: Let A be any m -closed set of (X, m ) and f(A) x

V mSO(Y). Then, by Theorem 6.2, A  f (V) mSO(X).1

Since A is m -closed, cl(A) f (V) and f(cl(A)) V. Since1

f is closed, cl(f(A))  f(cl(A)) V. Hence f(A) is m -closed
in (Y, m ).y

Theorem 6.5: Iff: (X, m )  (Y, m ) is continuous and f: (X,x y

m )  (Y, m ) is M-semi closed, then f (B) is m -closed inx y
1

(X, m ) for each m -closed set B of (Y, m ).x y
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