Middle-East Journal of Scientific Research 25 (2): 427-431, 2017 ISSN 1990-9233 © IDOSI Publications, 2017 DOI: 10.5829/idosi.mejsr.2017.427.431

Between Closed Sets and ω -Closed Sets in Topological Spaces

¹G. Ramkumar, ²R. Anbunathan and ³A. Pandi

¹Department of mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India ²Department of Mathematics, Jeppiaar Maamallan Engineering College, India ³Department of Mathematics with CA, Senthamarai College of Arts and Science, Madurai, India

Abstract: Sheik John (= Veera Kumar) introduced the notion of ω -closed sets (= \hat{g} -closed sets). Many variations of ω -closed sets were introduced and investigated. In this paper, we introduce the notion of m ω -closed sets and obtain the unified characterizations for certain families of subsets between closed sets and ω -closed sets.

AMSMathematics Subject Classification: $54A05 \cdot 54D15 \cdot 54D30$ **Key words and phrases:** ω -closed set \cdot m-structure \cdot m-space and m ω -closed

INTRODUCTION

In 1970, Levine [1] introduced the notion of generalized closed (g-closed) sets in topological spaces. Recently, many variations of g-closed sets are introduced and investigated. In this paper, we introduce the notion of m ω -closed sets and obtain the basic properties, characterizations and preservation properties. In the last section, we define several new subsets which lie between closed sets and m ω -closed sets.

Preliminaries: Let (X, τ) be a topological space and Aa subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A of a space (X, τ) is an α -open [2] (resp. preopen [3]) set if A \subseteq int(cl(int(A))) (resp. A \subseteq int(cl(A))). The family of all α -open sets in (X, τ) , denoted by τ , is a topology on X finer than τ . The closure of a subset A in (X, τ^{α}) is denoted by cl_{α}(A).

Definition 2.1: A subset A of a topological space (X, τ) is said to be

- Semiopen [4] if A⊆cl(int (A)).
- Semipreopen [5] if A⊆cl(int(cl (A))).

The complement of semi-open (resp. semipreopen) set is said to be semiclosed (resp. semi-preclosed). The family of all semiopen (resp. semipreopen) sets in X is denoted by SO(X) (resp .SPO(X)). The semiclosure of A [3] (resp. semipreclosure of A [5]), denoted by scl(A) (resp. spcl(A)), is defined by;

 $scl(A) = \cap \{F: A \subseteq F, X - F \in SO(X)\},$ $spcl(A) = \cap \{F: A \subseteq F, X - F \in SPO(X)\}.$

Definition 2.2: A subset A of a topological space (X, τ) is said to be g-closed set [1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.3: A subset A of a topological space (X, τ) is said to be ω -closed set [6] (or \hat{g} -closed set [7]) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X. The complement of ω -closed set is said to be ω -open in X.

Definition 2.4: A subset A of a topological space (X, τ) is said to be*g-closed set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in X. The complement of *g-closed set is said to be *g-open in X.

Definition 2.5: A subset A of a topological space (X, τ) is said to be[#]gs-closed set [9] if scl(A) \subseteq U whenever A \subseteq U and U is *g-open in X. The complement of [#]gs-closed set is said to be [#]gs-open in X.

Definition 2.6: A subset A of a topological space (X, τ) is said to be[#]pg-closed set [10] if spcl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.

Corresponding Author: G. Ramkumar, Department of mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India. **Definition 2.7:** A subset A of a topological space (X, τ) is said to be \tilde{g} -closed set [11] if cl(A) \subseteq U whenever A \subseteq U and U is [#]gs-open in X.

Definition 2.8: A subset A of a topological space (X, τ) is said to be \tilde{g} s-closed set [12] if scl(A) \subseteq U whenever A \subseteq U and U is [#]gs-open in X.

Definition 2.9: A subset A of a topological space (X, τ) is said to besg-closed set [2] if scl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.

Definition 2.10: A subset A of a topological space (X, τ) is said to be gs-closed set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.11: A subset A of a topological space (X, τ) is said to be gsp-closed set [5] if $spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.

Throughout the present paper (X, τ) and (Y, σ) always denote topological spaces and $f : (X, \tau) \neg (Y, \sigma)$ presents a function.

3.m-Structures:

Definition 3.1: A subfamily $m_x \subseteq P(X)$ is said to be a minimal structure [13](briefly*m*-structure) on X if ϕ , $X \in m_x$. The pair (X, m_x) is called a minimal space (*m* -space). Each member of m_x is said to be *m*-open and the complement of an *m*-open set is said to be *m*-closed.

Remark 3.2: Let (X, τ) be a topological space. Then $m_x = \tau$, SO(X) and SPO(X) are minimal structures on X.

Definition 3.3: Let (X, m_x) be an *m*-space. For a subset A of X, the m_x -closure of A and the m_x -interior of A are defined in [14] as follows:

•
$$m - cl(A) = \bigcap \left\{ F : A \subset F, F^c \in m_x \right\}$$

•
$$m - \operatorname{int}(A) = \bigcup \{ U : U \subset A, U \in m_x \}$$

4.m ω -**Closed Sets:** In this section, let (X, τ) be a topological space and m_x an *m*-structure on X. We obtain several basic properties of $m\omega$ -closed sets.

Definition 4.1: Let (X, τ) be a topological space and m_x an *m*-structure on X. A subset A of X is said to be *m*-semi open [14] if A \subseteq *m*-cl(*m*-int(A)). The family of all *m*-semi open sets in X is denoted by *m*SO(X). The complement of *m*-semi open set is said to be *m*-semiclosed.

Definition 4.2: Let (X, τ) be a topological space and m_x an *m*-structure on X. For a subset A of X, the *m*-semiclosure of A [14] and the *m*-semiinterior of A, denoted by *m*-scl(A) and *m*-sint(A), respectively are defined as follows:

- m-scl(A) = \cup {F:A \subseteq F, F *is m*-semi closed in X},
- m-sint(A) = \cap {U : U \subset A, Uism-semi open in X}.

Definition 4.3: Let (X, τ) be a topological space and m_x an *m*-structure on X. A subset A of X is said to be *m*-space. A subset A of X is said to be;

- mω-closed if cl(A)⊆U whenever A⊆U and U is msemi-open,
- $m\omega$ -open if its complement is m- ω -closed.

Remark 4.4: Let (X, τ) be a topological space and Aa subset of X. If mSO(X) = SO(X) (resp. τ) and A is muclosed, then A is ω -closed (g-closed).

Theorem 4.5: Let (X, mSO(X)) be an *m*-space and Aa subset of X. Then $x \in m$ -scl(A) if and only if $U \cap A \neq \phi$ for every *m*-semi open set U containing x.

Proof: Suppose there exists *m*-semi open set U containing x such that $U \cap A = \phi$. Then $A \subseteq X - U$ and $X - (X - U) = U \in mSO(X)$. Then by definition 4.2, *m*-scl(A) $\subseteq X - U$. Since x \in U, we have x \notin *m*-scl(A). Conversely, suppose that x \notin *m*-scl(A). There exists a subset F of X such that $X - F \in mSO(X)$, $A \subseteq F$ and x \notin F. Then there exists *m*-semi open set X-F containing x such that $(X - F) \cap A = \phi$.

Definition 4.6: An *m*-structure m_x on a nonempty set X is said to have property C [13] if the union of any family of subsets belonging to m_x belongs to m_x .

Example 4.7: Let $X = \{a, b, c, d\}, m_x = \{\phi, X, \{a, b\}, \{a, c\}, \{b, d\}\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}\}$. Then $m\omega$ - open sets are ϕ , X, $\{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}$ and $\{a, b, d\}$ }. It is shown that $m\omega O(X)$ does not have property C.

Remark 4.8: Let (X, τ) be a topological space. Then the families SO(X) and τ are all *m*-structure with property C.

Lemma 4.9: Let X be a nonempty set and*m*SO(X)an *m*-structure on X satisfying property C. For a subset A of X, the following properties hold:

- A \in *m*SO(X) if and only if *m*-sint(A) =A,
- A is *m*-semi closed if and only if m-scl(A) = A,
- m-sint(A) $\in m$ SO(X) and m-scl(A) is m-semi closed.

Proposition 4.10: Let $SO(X) \subseteq mSO(X)$. Then the following implications hold:

Closed \rightarrow *m* ω -closed $\rightarrow \omega$ -closed.

Proof: It is obvious that every closed set is $m\omega$ -closed. Suppose that A is an $m\omega$ -closed set. Let $A \subseteq U$ and $U \in$ SO(X). Since SO(X) $\subseteq m$ SO(X), cl(A) $\subseteq U$ and hence A is ω -closed.

Example 4.11: Let $X = \{a, b, c\}, m_x = \{\phi, X, \{c\}\}$ and $\tau = \{\phi, X, \{b\}, \{a, c\}\}$. Then ω -closed sets are the power sets of X: $m\omega$ -closed are $\phi, X, \{a\}, \{b\}, \{a, b\}$ and $\{a, c\}$ and closed sets are $\phi, X, \{b\}$ and $\{a, c\}$. It is clear that $\{b, c\}$ is ω -closed but it is not $m\omega$ -closed and $\{a, b\}$ is $m\omega$ -closed but it is not closed.

Proposition 4.12: If A and B are $m\omega$ -closed then $A \cup B$ is $m\omega$ -closed.

Proof: Let $A \cup B \subseteq U$ and $U \in mSO(X)$, Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $m\omega$ -closed, we have $cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$. Therefore, $A \cup B$ is $m\omega$ -closed.

Proposition 4.13: If A is $m\omega$ -closed and *m*-semi open, then A is closed.

Proposition 4.14: If A is $m\omega$ -closed and $A \subseteq B \subseteq cl(A)$, then B is $m\omega$ -closed.

Proof: Let $B \subseteq U$ and $U \in mSO(X)$. Then $A \subseteq U$ and A is $m\omega$ -closed. Hence $cl(B) \subseteq cl(A) \subseteq U$ and B is $m\omega$ -closed.

Definition 4.15: Let (X, mSO(X)) be an *m*-space and Aa subset of X. Then *m*Semi-Frontier of A, *m*S-Fr(A), is defined as follows: mS-Fr(A) = m-scl(A) \cap m-scl(X–A).

Proposition 4.16: If A is $m\omega$ -closed and A $\subseteq U \in mSO(X)$, then mS-Fr(U) \subseteq int(X–A).

Proof: Let A be $m\omega$ -closed and A $\subseteq U \in mSO(X)$. Then $cl(A) \subseteq U$. Suppose that $x \in mS$ -Fr(U). Since $U \in mSO(X)$, mS-Fr(U) = m-scl(U) \cap m-scl(X-U)= m-scl(U) \cap (X-U)=m-scl(U) - U. Therefore, $x \notin U$ and $x \notin cl(A)$. This shows that $x \in int(X-A)$ and hence mS-Fr(U) $\subseteq int(X-A)$.

Proposition 4.17: A subset A of X is $m\omega$ -open if and only if $F \subseteq int(A)$ whenever $F \subseteq A$ and A is *m*-semi closed.

Proof: Suppose that A is $m\omega$ -open. Let $F \subseteq A$ and F be *m*-semi closed. Then $X-A \subseteq X-F \in mSO(X)$ and X -A is $m\omega$ -

closed. Therefore, we have $X - int(A) = cl(X - A) \subseteq X - F$ and hence $F \subseteq int(A)$. Conversely, let $X - A \subseteq G$ and $G \in mSO(X)$. Then $X - G \subseteq A$ and X - G is *m*-semi closed. By hypothesis, we have $X - G \subseteq int(A)$ and hence $cl(X - A) = X - int(A) \subseteq G$. Therefore, X - A is $m\omega$ -closed and A is $m\omega$ open.

Corollary 4.18: Let $SO(X) \subseteq mSO(X)$. Then the following properties hold:

- Every open set is mω-open and every mω-open set is ω-open,
- If A and B are $m\omega$ -open, then A \cap B is $m\omega$ -open,
- If A is $m\omega$ -open and *m*-semi closed, then A is open,
- If A is $m\omega$ -open and $int(A) \subseteq B \subseteq A$, then B is $m\omega$ -open.

Proof: This follows from propositions 4.10, 4.12, 4.13 and 4.14.

Characterizations of $m\omega$ -Closed Sets: In this section, let (X, τ) be a topological space and m_x an *m*-structure on X. We obtain some characterizations of $m\omega$ -closed sets.

Theorem 5.1: A subset A of X is $m\omega$ -closed if and only if $cl(A) \cap F = \phi$ whenever $A \cap F = \phi$ and F is *m*-semi closed.

Proof: Suppose that A is $m\omega$ -closed. Let $A \cap F = \phi$ and F be *m*-semi closed. Then $A \subseteq X - F \in mSO(X)$ and $cl(A) \subseteq X - F$. Therefore, we have $cl(A) \cap F = \phi$. Conversely, let $A \subseteq U$ and $U \in mSO(X)$. Then $A \cap (X - U) = \phi$ and X - U is *m*-semi closed. By the hypothesis, $cl(A) \cap (X - U) = \phi$ and hence $cl(A) \subseteq U$. Therefore, A is $m\omega$ -closed.

Theorem 5.2: Let $SO(X) \subseteq mSO(X)$ and mSO(X) have property C. A subset A of X is $m\omega$ -closed if and only if cl(A) - A contains no nonempty *m*-semi closed.

Proof: Suppose that A is $m\omega$ -closed. Let $F \subseteq cl(A) - A$ and F be *m*-semi closed. Then $F \subseteq cl(A)$ and F $\notin A$ and so $A \subseteq X - F \in mSO(X)$ and hence $cl(A) \subseteq X - F$. Therefore, we have $F \subseteq X - cl(A)$. Hence $F = \phi$. Conversely, suppose that A is not $m\omega$ -closed. Then by Theorem 5.1, $\phi \neq cl(A) - U$ for some $U \in mSO(X)$ containing A. Since $\tau \subseteq SO(X) \subseteq mSO(X)$ and mSO(X) has property C, cl(A) - U is *m*-semi closed. Moreover, we have $cl(A) - U \subseteq cl(A) - A$, a contradiction. Hence A is $m\omega$ -closed.

Theorem 5.3: Let $SO(X) \subseteq mSO(X)$ and mSO(X) have property C. A subset A of X is $m\omega$ -closed if and only if cl(A) - A is $m\omega$ -open.

Proof: Suppose that A is $m\omega$ -closed. Let $F \subseteq cl(A) - A$ and F be *m*-semi closed. By Theorem 5.2, we have $F = \phi$ and $F \subseteq$ It follows from proposition 4.16, cl(A) - A is $m\omega$ -open. Conversely, let $A \subseteq U$ and $U \in mSO(X)$. Then $cl(A) \cap (X - U) \subseteq cl(A) - A$ and cl(A) - A is $m\omega$ -open. Since $\tau \subseteq SO(X) \subseteq mSO(X)$ and mSO(X) has property C, $cl(A) \cap (X - U)$ is *m*-semi closed and by proposition 4.17, $cl(A) \cap (X - U) \subseteq int(cl(A) - A)$. Now $int(cl(A) - A) = int(cl(A)) \cap (X - U) \subseteq int(X - A) \subseteq cl(A) \cap int(X - A) = cl(A) \cap (X - cl(A)) = \phi$ Therefore, we have $cl(A) \cap (X - U) = \phi$ and hence $cl(A) \subseteq U$. This shows that A is $m\omega$ -closed.

Theorem 5.4: Let (X, mSO(X)) be an *m*-structure with property C. A subset A of X is $m\omega$ -closed if and only if m-scl($\{x\}$) $\cap A \neq \phi$ for each $x \in cl(A)$.

Proof: Suppose that A is $m\omega$ -closed and m-scl({x}) \cap A = ϕ for some x \in cl(A). By lemma 4.9, m-scl({x}) is m-semi closed and A \subseteq X-(m-scl({x})) \in mSO(X). Since A is $m\omega$ -closed, cl(A) \subseteq X-(m-scl({x})) \subseteq X- {x}, a contradiction, since x \in cl(A). Conversely, suppose that A is not $m\omega$ -closed. Then by Theorem 5.1, $\phi \neq$ cl(A) –U for some U \in mSO(X) containing A. There exists x \in cl(A) –U. Since x \notin U, by Theorem 4.5, m-scl({x}) \cap U = ϕ and hence m-scl({x}) \cap A \subset m-scl({x}) \cap U = ϕ . This shows that m-scl({x}) \cap A = ϕ for some x \in cl(A). Hence A is $m\omega$ -closed.

Corollary 5.5: Let $SO(X) \subseteq mSO(X)$ and mSO(X) have property C. For a subset A of X, the following properties are equivalent:

- A ism ω -open,
- A- int(A) contains no nonempty *m*-semi closed set,
- A-int(A) is m ω -open,
- m-scl({x}) \cap (X-A) $\neq \phi$ for each x \in A-int(A).

Proof: This follows from Theorems 5.2, 5.3 and 5.4.

Preservation theorems

Definition 6.1: A function f: $(X, m_x) \rightarrow (Y, m_y)$ is said to be

- M-semi continuous if f⁻¹(V) is *m*-semi closed in (X, m_x) for every *m*-semi closed V in (Y, m_y),
- M-semi closed if for each *m*-semi closed set F of (X, *m_x*), f(F) is *m*-semi closed in (Y, *m_y*).

Theorem 6.2: Let mSO(X) be an m-structure with property C. Let f: $(X, m_x) \rightarrow (Y, m_y)$ be a function from a minimal

space (X, m_x) into a minimal space (Y, m_y) . Then the following are equivalent:

- f is M-semi continuous,
- $f^{-1}(V) \in mSO(X)$ for every $V \in mSO(Y)$.

Proof: Assume that f: $(X, m_x) \rightarrow (Y, m_y)$ is M-semi continuous. Let $V \in mSO(Y)$. Then V^c ism-semi closed in (Y, m_y) . Since f is M-semi continuous, $f^{-1}(V^c)$ is m-semi closed in (X, m_x) . But $f^{-1}(V^c) = X - f^{-1}(V)$. Thus $X - f^{-1}(V)$ is m-semi closed in (X, m_x) and so $f^{-1}(V)$ is m-semi open in (X, m_x) . Conversely, let for each $V \in mSO(Y)$, $f^{-1}(V) \in mSO(X)$. Let F be any m-semi closed in (Y, m_y) . By assumption, $f^{-1}(F^c)$ ism-semi open in (X, m_x) . But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is m-semi open in (X, m_x) and so $f^{-1}(F)$ is m-semi closed in (X, m_x) and so $f^{-1}(F)$ is m-semi closed in (X, m_x) and so $f^{-1}(F)$ is m-semi closed in (X, m_x) and so $f^{-1}(F)$ is m-semi closed in (X, m_x) . Hence f is M-semi continuous.

Lemma 6.3: A function f: $(X, m_x) \rightarrow (Y, m_y)$ is M-semi closed if and only if for each subset B of Y and each U ϵ *m*SO(X) containing f⁻¹(B), there exists V ϵ *m*SO(Y) such that B \subseteq V and f⁻¹(V) \subseteq U.

Proof: Suppose that f is M-semi closed. Let $B \subseteq Y$ and $U \in mSO(X)$ containing $f^{-1}(B)$. Put V = Y - f(X - U). Then V is *m*-semi open in (Y, m_y) and $f^{-1}(V) \subseteq f^{-1}(Y) - (X - U) = X - (X - U) = U.$ Also, since $f^{-1}(B) \subseteq U$, then $X - U \subseteq f^{-1}(Y - B)$ which implies $f(X - U) \subseteq Y$ -B and hence $B \subseteq V$. Hence we obtain V $\in mSO(Y)$ such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$. Conversely, let F be any *m*-semi closed of (X, m_x) . Set f(F) = B, then $F \subseteq f^{-1}(B)$ and $f^{-1}(Y - B) \subseteq X - F \in mSO(X)$. By the hypothesis, there exists $V \in mSO(Y)$ such that $Y - B \subseteq V$ and $f^{-1}(V) \subseteq X$ -F and so $F \subset f^{-1}(Y - V)$. Therefore $f(F) \subseteq Y - V$. Hence, we obtain $Y - V \subseteq B = f(F) \subseteq Y - V$. Therefore f(F) = Y - V is *m*-semi closed in (Y, m_y) . Hence f is M-semi closed.

Theorem 6.4: Iff: $(X, m_x) \rightarrow (Y, m_y)$ is closed and f: $(X, m_x) \rightarrow (Y, m_y)$ is M-semi continuous, where *m*SO(X) has property C, then f(A) is *m* ω -closed in (Y, m_y) for each *m* ω -closed set A of (X, m_x)

Proof: Let A be any $m\omega$ -closed set of (X, m_x) and $f(A) \subseteq V \in mSO(Y)$. Then, by Theorem 6.2, $A \subseteq f^{-1}(V) \in mSO(X)$. Since A is $m\omega$ -closed, $cl(A) \subseteq f^{-1}(V)$ and $f(cl(A)) \subseteq V$. Since f is closed, $cl(f(A)) \subseteq f(cl(A)) \subseteq V$. Hence f(A) is $m\omega$ -closed in (Y, m_y) .

Theorem 6.5: If: $(X, m_x) \rightarrow (Y, m_y)$ is continuous and f: $(X, m_x) \rightarrow (Y, m_y)$ is M-semi closed, then $f^{-1}(B)$ is *m* ω -closed in (X, m_x) for each *m* ω -closed set B of (Y, m_y) .

Proof: Let B beany m ω -closed set of (Y, m_y) and $f^{-1}(B) \subseteq U \in mSO(X)$. Since f is M-semi closed, by Lemma 6.3, there exists $V \in mSO(Y)$ such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$. Since B is $m\omega$ -closed, $cl(B) \subseteq V$ and since f is continuous, $cl(f^{-1}(B)) \subseteq f^{-1}(cl(B)) \subseteq f^{-1}(V) \subseteq U$. Hence $f^{-1}(B)$ is $m\omega$ -closed in (X, m_x) .

New Forms of Closed Sets in Topological Spaces

Definition 6.1: A subset A of X is called a \tilde{g} -semi preclosed set (\tilde{g} sp-closed set) if spcl (A) \subseteq U whenever A \subseteq U and U is [#]gs-open in X.

By SO(X) (resp. \tilde{G} SO(X), SGO(X), GSO(X), SPO(X), \tilde{G} SPO(X), SPGO(X), GSPO(X)) we denote the collection of all semi open (resp. #gs-open, sg-open, gs-open, semi preopen, \tilde{g} sp-open, spg-open, gsp-open) setsof topological space (X, τ). If $m_x = \tau$, these collection are minimal structures on X.

By the definitions, we obtain the following diagram:

Diagram I

Semi open	$\rightarrow gs-open$	\rightarrow	sg-open	\rightarrow	gs-open
\downarrow	\downarrow		\downarrow		\downarrow
Semi preopen	\rightarrow g sp-open	\rightarrow	spg-open	\rightarrow	gsp-open

For subsets of a topological space (X, τ), we can define new types of closed sets as follows:

Definition 6.2: A subset A of a topological space (X, τ) is said to be ω -closed (resp. \tilde{g} sg -closed, sgg -closed, gsg -closed, sog -closed, \tilde{g} spg -closed, spgg -closed, gspg -closed) if cl(A) \subseteq U whenever A \subseteq U and U is semiopen (resp. \tilde{g} s-open, sg-open, gs-open, semi-preopen, \tilde{g} sp -open, spg-open, gsp-open) in (X, τ) .

By Diagram I and Definition 6.2, we have the following diagram:

Diagram II

 ω -closed \leftarrow g sg -closed \leftarrow sgg -closed \leftarrow g sg -closed \uparrow \uparrow \uparrow \uparrow

sog-closed ← ≥ spg -closed	← spgg -closed	←gspg -closed	+	closed

REFERENCES

- Levine, N., 1970. Generalized closed sets in topology, Rend. Circ. Mat. Palermo., 2(19): 89-96.
- Popa, V. and T. Noiri, 2000. On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., (2), 18(23): 31-41.
- Navaneethakrishnan, M. and J. Paulraj Joseph, 2008. g-closed sets in ideal topological spaces, Acta Math Hung, 119(4): 365-371.
- Levine, N., 1963. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly., 70: 36-41.
- Dontchev, J., 1995. On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 16: 35-48.
- Levine, N., 1963. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70: 36-41.
- Veerakumar, M.K.R.S., 2003. ĝ -closed sets in topological spaces, Bull. Allahabad Math. Soc., 18: 99-112.
- Veerakumar, M.K.R.S., 2006. Between g*-closed sets and g-closed sets, Antarctica J. Math., 3(1): 43-65.
- Veerakumar, M.K.R.S., 2005. # g-semi-closed sets in topological spaces, Antarctica J. Math., 2(2): 201-222.
- Veerakumar, M.K.R.S., 1999. Semi-pre-generalized closed sets, Mem. Fac. Sci. Kochi Univ. (Japan) Scr. A. Math., 20: 33-46.
- Jafari, S., T. Noiri, N. Rajesh and M.L. Thivagar, 2008. Another generalization of closed sets, Kochi J. Math., 3: 25-38.
- Rajesh, N., M. LellisThivagar, P. Sundaram and Zbigniew Duszynski, 2007. *ğ*-semi-closed sets in topological spaces, Mathematica Pannonica., 18(1): 51-61.
- Bhattacharyya, P. and B.K. Lahiri, 1987. Semigeneralized closed sets in topology, Indian J. Math., 29(3): 375-382.
- Min, W.K., 2009. m-semi-open sets and Msemicontinuous functions on spaces with minimal structures, Honam Mathematical Journal, 31(2): 239-245.