Middle-East Journal of Scientific Research 25 (2): 367-373, 2017 ISSN 1990-9233 © IDOSI Publications, 2017 DOI: 10.5829/idosi.mejsr.2017.367.373

On Almost Contra(b, µ)-Continuous Functions

¹G. Ramkumar, ²P.L. Theresa and ²R. Rajalakshmi

¹Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India ²Department of Mathematics, Jeppiaar Maamallan Engineering College, India

Abstract: The purpose of this paper is to introduce the notion of almost contra (b, μ)-continuous function. Also the relationships between almost contra (b, μ)-continuous functions and the other forms are investigated.2010 Mathematics Subject Classification: 57C10, 57C08, 57C05.

Key words and phrases:Contra(b, μ)-continuity · Almostcontra (b, μ)-continuity · Strongly contra λ -b-closed · λ -b-closed compact

INTRODUCTION

In [1-3], csaszar founded the theory of generalized topological spaces and studied the extremely elementary character of these classes. Especially he introduced the notions of continuous functions on generalized topological spaces and investigated characterizations of generalized continuous functions (= (λ, μ) -continuous functions in [3]). In [4-6], Min introduced the notions of weak (λ, μ) -continuity, almost (λ, μ) -continuity, (α, μ) -continuity, (σ, μ) -continuity, (π, μ) -continuity and (β, μ) -continuity on generalized topological spaces. In [7], Jayanthi introduced the notion of contra continuous functions on generalized topological spaces.

The purpose of this paper is to introduce the notion of almost contra (b, μ)-continuous function. Also the relationships between almost contra (b, μ)-continuous functions and the other forms are investigated.

Preliminaries

Definition 2.1 [3]: Let X be a nonempty set and λ be a collection of subsets of X. Then λ is called a generalized topology (briefly GT) on X if $\phi \in \lambda$ and $G_i \in \lambda$ for $i \in I \neq \phi$ implies $G = \cup_{i_1} \in G_i \in \lambda$. We say λ is strong if $X \in \lambda$ and we call the pair (X,λ) a generalized topological space (briefly GTS) on X.

The elements of λ are called λ -open sets and their complements are called λ -closed sets. The generalized closure of a subset S of X, denoted by $c_{\lambda}(S)$, is the

intersection of λ -closed sets including S. And the interior of S, denoted by $i_{\lambda}(S)$, is the union of λ -open sets contained in S.

Definition 2.2: Let (X,λ) be a generalized topological space and $A \subseteq X$. Then A is said to be

- λ -semi-open [2] if $A \subseteq c_{\lambda}(i_{\lambda}(A))$,
- λ -preopen [2] if A $\subseteq i_{\lambda}(c_{\lambda}(A))$,
- λ - α -open [2] if A $\subseteq i_{\lambda}(c_{\lambda}(i_{\lambda}(A)))$,
- λ - β -open [2] if A $\subseteq c_{\lambda}(i_{\lambda}(c_{\lambda}(A)))$,
- λ -b-open [8] if $A \subseteq c_{\lambda}(i_{\lambda}(A)) \cup i_{\lambda}(c_{\lambda}(A))$,
- λ -regular open [9] if A= $i_{\lambda}(c_{\lambda}(A))$.

The complement of λ -semi-open (resp. λ -preopen, λ - α -open, λ - β -open, λ -b-open, λ -regular open) is said to be λ -semi-closed (resp. λ -preclosed, λ - α -closed, λ - β -closed, λ -b-closed, λ -regular closed).

Let us denote by $\sigma(\lambda_x)$ (briefly σ_x or σ) the class of all λ -semi-open sets on X, by $\pi(\lambda_x)$ (briefly π_x or π) the class of all λ -preopen sets on X, by $\alpha(\lambda_x)$ (briefly α_x or α) the class of all λ - α -open sets on X, by $\beta(\lambda_x)$ (briefly β_x or β) the class of all λ - β -open sets on X, by $b(\lambda_x)$ (briefly b_x or β) the class of all λ - β -open sets on X, by $b(\lambda_x)$ (briefly b_x or b) the class of all λ - β -open sets on X.

Remark 2.3 [9]: Let (X, λ) be a generalized topological space. Then we have the following implications.

Lemma 2.4 [2]: Let (X, λ) be a generalized topological space and $A \subseteq X$. Then A is λ - α -open if and only if it is λ -semi-open and λ -preopen.

Corresponding Author: G. Ramkumar, Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India.

Definition 2.5 [10]: A GTS (X, λ) is said to be λ -extremally disconnected if the λ -closure of every λ -open set of X is λ -open in X.

Definition 2.6 [11]: A set A in a GTS (X, λ) is called λ clopen if it is both λ -open and λ -closed.

Definition 2.7 [11]: A subset A in a GTS (X, λ) is said to be λ -locally λ -closed set (briefly, λ -LC set) if A = M \cap N, where M is a λ -open set and N is a λ -closed set.

Definition 2.8[12]: A GTS (X, λ) is said to be λ -connected if it cannot be expressed as the union of two nonempty, disjoint λ -open sets.

Definition 2.9 [6]: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be (λ, μ) -open if the image of each λ -open set in X is an μ -open set of Y.

Definition 2.10 [13]: Let $f: (X, \lambda) \to (Y, \mu)$ be a function from a GTS (X, λ) to a GTS (Y, μ) . Then the function $g: X \to X \times Y$ defined by g(x) = (x, f(x)) is called the λ -graph function of f. Recall that for a function $f: (X, \lambda) \to (Y, \mu)$, the subset $\{(x, f(x)): x \in X\} \subseteq X \times Y$ is called the λ -graph of f and is denoted by G(f).

Theorem 2.11 [7]: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: X \to Y$ is contra (α, μ) -continuous if and only if it is both contra (π, μ) -continuous and contra (σ, μ) -continuous.

Definition 2.12 [13]: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be (b, μ) -continuous if for each μ -open set U in Y, $f^{-1}(U)$ is λ -b-open in X, $(\lambda$ -LC, $\mu)$ -continuous if for each μ -open set U in Y, $f^{-1}(U)$ is λ -locally λ -closed in X.

Definition 2.13 [13]: A filter base Λ is said to be λ -bconvergent to a point x in X if for any λ -b-open set M in X containing x, there exists a set $N \in \Lambda$ such that $N \subseteq M$.

Definition 2.14[13]: A GTS (X, λ) is said to be λ -b-connected if it cannot be expressed as the union of two nonempty, disjoint λ -b-open sets.

Definition 2.15[13]: A GTS (X, λ) is said to be λ -b-T₁ if for each pair of distinct points x and y of X, there exist λ -b-open sets M and N containing x and y respectively such that y not belongs to M and x not belongs to N.

Definition 2.16 [13]: A GTS (X, λ) is said to be λ -b-compact if every λ -b-open cover of X has a finite subcover.

Definition 2.17 [13]: GTS (X, λ) is said to be λ -Urysohn if for each pair of distinct points x and y in X, there exist λ -open sets U and V such that $x \in U$, $y \in V$ and $c_{\lambda}(U) \cap c_{\lambda}(V) = \varphi$.

Definition 2.18 [14]: A GTS (X, λ) is said to be λ -b-T₂ if for each pair of distinct points x and y of X, there exist λ -b-open sets M and N containing x and y respectively such that $x \in U, y \in V$ and $c_{\lambda}(U) \cap c_{\lambda}(V) = f$.

Almost Contra (b, μ)-Continuous Functions: In this section, we introduce the notion of almost contra (b, μ)-continuous function.

Definition 3.1: Let (X, λ) and (Y, μ) be GTS's. Then a function $f : (X, \lambda) \rightarrow (Y, \mu)$ is said to be contra (b, μ) -continuous if for each μ -open set U in $Y, f^{-1}(U)$ is λ -b-closed in X, almost contra (b, μ) -continuous if the inverse image of each μ -regular open set in Yis λ -b-closed in X.

Theorem 3.2: Let $f: (X, \lambda) \to (Y, \mu)$ be a function and let g: $X \to X \times Y$ be the λ -graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is almost contra (b, μ)-continuous, then f is almost contra (b, μ)-continuous.

Proof: LetAbe a μ -regular closed set in Y,then X × Ais a λ -regular closed set in X × Y. Since g is almost contra (b, μ)-continuous, then $f^{-1}(A) = g^{-1}(X \times A)$ is λ -b-open in X. Thus, f is almost contra (b, μ)-continuous.

Definition 3.3: A filter base Λ is said to be λ -rcconvergent to a point x in X if for any λ -regular closed set M in X containing x, there exists a set $N \in \Lambda$ such that $N \subseteq M$.

Theorem 3.4: If a function $f : (X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ)-continuous, then for each point $x \in X$ and each filter base Λ in X λ -b-converging to x, the filter base $f(\Lambda)$ is μ -rc-convergent to f(x).

Proof: Let $x \in X$ and Λ be any filter base in $X \lambda$ -bconverging to x. Since f is almost contra (b, μ) continuous, then for any μ -regular closed set M in Ycontaining f(x), there exists a λ -b-open set N in Xcontaining x such that $f(N) \subseteq M$. Since Λ is λ -bconverging to x, there exists a $P \in \Lambda$ such that $P \subseteq N$. This means that $f(P) \subseteq M$ and therefore the filter base $f(\Lambda)$ is μ -rc-convergent to f(x).

Theorem 3.5: If $f: (X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ) continuous surjective function and X is λ -b-connected
space, then Y is μ -connected space.

Proof: Suppose that Y is not μ -connected space. Then there exists nonempty disjoint μ -open sets M and N such that $Y = M \cup N$. Therefore, M and N are μ -regular open sets in Y. Since f is almost contra (b, μ)-continuous, then $f^{-1}(M)$ and $f^{-1}(N)$ are λ -b-closed in X. Moreover, $f^{-1}(M)$ and $f^{-1}(N)$ are nonempty disjoint and $X = f^{-1}(M) \cup f^{-1}(N)$. This shows that X is not λ -b-connected. This is a contradiction. By contradiction, Y is λ -connected.

Definition 3.6: A GTS (X, λ) is said to be λ -b-normal if every pair of nonempty disjoint λ -closed sets can be separated by disjoint λ -b-open sets.

Definition 3.7: A GTS (X, λ) is said to be strongly λ -normal if for every pair of nonempty disjoint λ -closed sets M and N in X there exist disjoint λ -open sets P and Q such that $M \subseteq P$, $N \subseteq Q$ and $c_{\lambda}(P) \cap c_{\lambda}(Q) = \phi$.

Theorem 3.8: If (Y, μ) is strongly λ -normal and $f: (X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ) -continuous λ -closed injective function, then (X, λ) is λ -b-normal.

Proof: Let M and N be disjoint nonempty λ -closed sets of X. Since f is injective and λ -closed, f(M) and f(N) are disjoint λ -closed sets. Since (Y, μ) is strongly λ -normal, there exists λ -open sets P and Q such that f(M) \subseteq P, f(N) \subseteq Q and $c_{\mu}(P) \cap c_{\mu}(Q) = \phi$. Then, since $c_{\mu}(P)$ and $c_{\mu}(Q)$ are λ -regular closed and f isalmost contra (b, μ)-continuous, f⁻¹($c_{\mu}(P)$) and f⁻¹($c_{\mu}(Q)$) are λ -b-open sets. Since M \subseteq f⁻¹($c_{\mu}(P)$), N \subseteq f⁻¹($c_{\mu}(Q)$) and f⁻¹($c_{\mu}(Q)$) are disjoint, (X, λ) is λ -b-normal.

Definition 3.9: A GTS (X, λ) is said to be weakly λ -T₂ if each element of X is an intersection of λ -regular closed sets.

Theorem 3.10: If $f: (X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ) continuous injective function and (Y, μ) is μ -Urysohn, then (X, λ) is λ -b-T₂.

Proof: Suppose that (Y, μ) is μ -Urysohn. By the injectivity of f, it follows that $f(x) \neq f(y)$, for any distinct singletons x and y in X. Since Y is μ -Urysohn, there exists λ -open sets M and N such that $f(x) \in M$, $f(y) \in N$ and $c_{\mu}(M) \cap c_{\mu}(N) = \varphi$. Since f is almost contra (b, μ)-continuous, there exists λ -b-open sets P and Q in X containing x and y respectively, such that $f(P) \subseteq c_{\mu}(M)$ and $f(Q) \subseteq c_{\mu}(N)$. Hence $P \cap Q = \varphi$. This shows that X is λ -b-T₂.

Theorem 3.11: Let (X_i, λ_i) be a GTS for all $i \in I$ and I be finite. Suppose that $(\prod_{i \in I} X_i, \sigma)$ is a product space and f : $(X, \lambda) \rightarrow (\prod_{i \in I} X_i, \sigma)$ is any function. If f is almost contra

(b, μ)-continuous, then $pr_{i^{\circ}}$ f is almost contra (b, μ)continuous where pr_{i} is projection function for each $i \in I$.

Proof: Let $x \in X$ and $(pr_i^{\circ}f)(x) \in M_i$ and Mi be a λ -regular closed set in $(X_i, \lambda i)$. then $f(x) \in pr_i^{-1}(M_i) = M_i \times \prod_{i \neq j} X_j$ is a λ -regular closed set in $(\prod_{i \in I} X_i, \sigma)$. Since f is almost contra (b, μ)-continuous, there exists a λ -b-open set N containing x such that $f(N) \subseteq M_i \times \prod_{i \neq j} X_j = pr_i^{-1}(M_i)$ and

hence $N \subseteq (pr_i^{\circ}f)^{-1}(M_i)$ and we obtain that $pr_i^{\circ}f$ is almost contra (b, μ) -continuous for each $i \in I$.

Definition 3.12: A λ -graph G(f) of a function f: (X, λ) \neg (Y, μ) is said to be strongly contra λ -b-closed if for each (x, y) \in (X \times Y) \setminus G(f), there exist a λ -b-open set M in X containing x and a λ -regular closed set N in Y containing y such that (M \times N) n G(f) = ϕ .

Lemma 3.13: The following properties are equivalent for the λ -graph G(f) of a function f:

- G(f) is strongly contra λ -b-closed;
- for each (x, y) ∈ (X × Y) \ G(f), there exist a λ-b-open set M in X containing x and a λ-regular closed set N in Y containing y such that f(M) ∩ N = φ.

Theorem 3.14: If f: (X, λ) \rightarrow (Y, μ) is almost contra (b, μ)continuous and (Y, μ) is μ -Urysohn, then G(f) is strongly contra λ -b-closed in X \times Y.

Proof: Suppose that (Y, μ) is μ -Urysohn. Let $(x, y) \in (X \times$ Y) \ G(f). It follows that $f(x) \neq y$. Since Y is μ -Urysohn, there exist λ -open sets M and N in Y with $f(x) \in M$ and $y \in N$ such that $c_u(M) \cap c_u(N) = \phi$. Since f is almost contra (b, μ)-continuous, there exists a λ -b-open set P in X containing x such that $f(P) \subseteq c_{u}(M)$. Therefore, we obtain $f(P) \cap c_{\mu}(N) = \phi$ and G(f) is strongly contra λ -b-closed in X ×Y.

Theorem 3.15: Let $f: (X, \lambda) \rightarrow (Y, \mu)$ have a strongly contra λ -b-closed graph G(f). If f is injective, then X is λ $b-T_1$.

Proof: Let x and y be any two distinct points of X. Then, we have $(x, f(y)) \in (X \times Y) \setminus G(f)$. By Lemma 3.13, there exist a λ -b-open set M in X and a λ -regular closed set N in Y such that $x \in M$, $f(y) \in N$ and $f(M) \cap N = \phi$; hence M $\cap f^{-1}(N) = \phi$. Therefore, we have y not belongs to M. This implies that X is λ -b-T₁.

The Relationships: In this section, the relationships between almost contra(b, µ)-continuous functions and other forms are investigated.

Definition 4.1: Let (X, λ) and (Y, μ) be generalized topological spaces. A function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be weakly almost contra (b, µ)-continuous if for each point $x \in X$ and each λ -regular closed set M in Y containing f(x), there exists a λ -b-open set N in X containing x such that $f(N) \subseteq M$.

Definition 4.2: Let (X, λ) and (Y, μ) be generalized topological spaces. A function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be λ -(b, σ)-open if the image of each λ -b-open set is μ semi-open.

Theorem 4.3: If a function $f:(X, \lambda) \rightarrow (Y, \mu)$ is weakly almost contra (b, μ)-continuous and λ -(b, σ)-open, then f is almost contra (b, μ)-continuous.

Proof: Let $x \in X$ and M be a μ -regular closed set containing f(x). Since f is weakly almost contra (b, μ)continuous, there exists $a\lambda$ -b-open set N in X containing x such that $i_{\lambda}(f(N)) \subseteq M$. Since f is λ -(b, σ)-open, f(N) is a μ -semi-open set in Y and $f(N) \subseteq c_{\lambda}(i_{\lambda}(f(N))) \subseteq M$. This shows that f is almost contra (b, μ) -continuous.

Definition 4.4: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be

almostcontra (λ , μ)-continuous if for each μ -regular open set U in Y, $f^{-1}(U)$ is λ -closed in X,

almostcontra (α , μ)-continuous if for each μ -regular open set U in Y, $f^{-1}(U)$ is λ - α -closed in X,

almostcontra (σ , μ)-continuous if for each μ -regular open set U in Y, $f^{-1}(U)$ is λ -semi-closed in X,

almostcontra (π , μ)-continuous if for each μ -regular open set U in Y, $f^{-1}(U)$ is λ -preclosed in X,

almostcontra (β , μ)-continuous if for each μ -regular open set U in Y, $f^{-1}(U)$ is λ - β -closed in X.

Remark 4.5: Let $f: (X, \lambda) \rightarrow (Y, \mu)$ be a function between GTS's (X, λ) and (Y, μ). Then we have the following implications.

where 1. almost contra (λ , μ)-continuous

2. almost contra (α , μ)-continuous

3. almost contra (π, μ) -continuous

4. almost contra (σ , μ)-continuous 5. almost contra (b, μ)-continuous

6. almost contra (β , μ)-continuous

Remark 4.6: The reverse implications may not be true in general and this can be clearly seen from the following examples.

Example 4.7: Let $X = Y = \{a, b, c\}$. Consider two generalized topologies $\lambda = \{\phi, \{b\}, \{c\}, \{b, c\}\}$ and $\mu =$ $\{\phi, \{c\}\}\$ on X. Define f: (X, λ) > (Y, μ) as follows: f(a) = b, f(b) = c and f(c) = a. Then $f^{-1}({c}) = {b}$. We have f is almost contra (α , μ)-continuous and almost contra (σ , μ)continuous but not almost contra (λ , μ)-continuous.

Example 4.8: Let $X = Y = \{a, b, c\}$. Consider two generalized topologies $\lambda = \{\phi, \{b\}, \{c\}, \{b, c\}\}$ and $\mu =$ $\{\phi, \{c\}\}\$ on X. Define f: $(X, \lambda) > (Y, \mu)$ as follows: f(a) = c, f(b) = b and f(c) = a. Then $f^{-1}({c}) = {a}$. We have f is almost contra (β , μ)-continuous, almost contra (b, μ)continuous and almost contra (σ , μ)-continuous but not almost contra (π , μ)-continuous. Moreover f is not almost contra (α , μ)-continuous.

Example 4.9: Let $X = Y = \{a, b, c\}$. Consider two generalized topologies $\lambda = \{\phi, \{a, c\}\}$ and $\mu = \{\phi, \{a\}\}$ on X. Define $f: (X, \lambda) > (Y, \mu)$ as follows: f(a) = c, f(b) = b and f(c) = a. Then $f^{-1}(\{a\}) = \{c\}$. We have f is almost contra (π, μ) -continuous and almost contra (b, μ) -continuous but not almost contra (σ, μ) -continuous. Moreover f is not almost contra (α, μ) -continuous.

Definition 4.10: A GTS (X, λ) is said to be λ -P₆ if for any λ -open set M of X and each $x \in X$, there exists a λ -regular closed set N containing x such that $x \in N \subseteq M$.

Theorem 4.11: Iff : $(X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ) -continuous and Y is μ -P_ó, then f is (b, μ) -continuous.

Proof: Let M be a μ -open set in Y. Since Y is λ -P_o, there exists a family Ø whose members are μ -regular closed sets of Y such that $M = \bigcup \{N: N \in \emptyset\}$. Since f is almost contra (b, μ)-continuous, $f^{-1}(N)$ is λ -b-open in X for each $N \in \emptyset$ and hence $f^{-1}(M)$ is λ -b-open in X. Therefore f is (b, μ)-continuous.

Definition 4.12: A GTS is said to be weakly λ -P_o if for any λ -regular open set M of X and each $x \in X$, there exists a λ -regular closed set N containing x such that $x \in N \subseteq M$.

Definition 4.13: A function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be almost (b, μ)-continuous at $x \in X$ if for each λ -open set M containing f(x), there exists a λ -b-open set N containing x such that $f(N) \subseteq i_{\lambda}(c_{\lambda}(M))$.

Theorem 4.14: Let $f: (X, \lambda) \rightarrow (Y, \mu)$ be a almost contra (b, μ)-continuous function. If Y is weakly μ -P_ó, then f is almost (b, μ)-continuous.

Proof: Let M be a μ -regular open set in Y. Since Y is weakly μ -P_o, there exists a family Ø whose members are μ regular closed sets of Y such that $M = \bigcup \{N: N \in \emptyset\}$. Since f is almost contra (b, μ)-continuous, f⁻¹(N) is λ -b-open in X for each $N \in \emptyset$ and hence f⁻¹(M) is λ -b-open in X. Therefore f is almost (b, μ)-continuous.

Definition 4.15: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be λ -b-irresolute if the inverse image of each μ -b-open setin Y is λ -b-open in X.

Theorem 4.16: Let (X, λ) , (Y, μ) , (Z, γ) be GTS's and let f : $(X, \lambda) \neg (Y, \mu)$ and g : $(Y, \mu) \neg (Z, \gamma)$ be functions. If f is λ -b-irresolute and g is almost contra (b, μ)-continuous, then g°f : $(X, \lambda) \neg (Z, \gamma)$ is almost contra (b, μ)-continuous function.

Proof: Let $M \subseteq Z$ be any γ -regular closed set and let $(g^{\circ}f)(x) \in M$. Then $g(f(x)) \in M$. Since g is almost contra (b, μ)-continuous function, it follows that there exists a μ -bopen set N containing f(x) such that $g(N) \subseteq M$. Since f is λ -b-irresolute function, it follows that there exists a λ -bopen set P containing x such that $f(P) \subseteq N$. From here we obtain that $(g^{\circ}f)(P) = g(f(P)) \subseteq g(N) \subseteq M$. Thus we show that $g^{\circ}f$ is almost contra (b, μ)-continuous function.

Definition 4.17: Let (X, λ) and (Y, μ) be GTS's. Then a function $f : (X, \lambda) \rightarrow (Y, \mu)$ is said to be λ -b-open if the image of each λ -b-open set is μ -open.

Definition 4.18: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be always λ -b-open if the image of each λ -b-open set is μ -b-open.

Theorem 4.19: Let (X, λ) , (Y, μ) , (Z, γ) be GTS's. If f: $(X, \lambda) \rightarrow (Y, \mu)$ is a surjective λ -b-open function and g: $(Y, \mu) \rightarrow (Z, \gamma)$ is a function such that g°f: $(X, \lambda) \rightarrow (Z, \gamma)$ is almost contra (b, μ)-continuous, then g is almost contra (b, μ)-continuous function.

Proof: Suppose that x is a singleton in X. Let M be a γ -regular closed set in Z containing (g°f)(x). Then there exists a λ -b-open set N in X containing x such that g(f(N)) \subseteq M. Since f is λ -b-open, f(N) is μ -b-open in Y containing f(x) such that g(f(N)) \subseteq M. This implies that gis almost contra (b, μ)-continuous function.

Corollary 4.20: Let (X, λ) , (Y, μ) , (Z,γ) be GTS's. If f: $(X, \lambda) \rightarrow (Y, \mu)$ is a surjective λ -b- irresolute and λ -b-open function and let g : $(Y, \mu) \rightarrow (Z, \gamma)$ be a function. Then, g°f : $(X, \lambda) \rightarrow (Z, \gamma)$ is almost contra (b, μ)-continuous if and only if g is almost contra (b, μ)-continuous function.

Proof: It can be obtained from Theorem4.16 and Theorem 4.19.

Definition 4.21: A GTS (X, λ) is said to be λ -R-closed if every λ -regular closed cover of X has a finite subcover.

Theorem 4.22: The almost contra (b, μ)-continuous images of λ -b-compact spaces are μ -R-closed.

Proof: Suppose that $f: (X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ)-continuous surjection. Let {Mi: $i \in I$ } be any μ -regular closed cover of Y. Since f is almost contra (b, μ)-

continuous, then { $f^{-1}(M_i)$: I \in I} is a λ -b-open cover of X and hence there exists a finite subset I0 of I such that $X = \cup \{f^{-1}(M_i): i \in I_0\}$. Therefore, we have $Y = \cup \{M_i: i \in I_0\}$ and Y is μ -R-closed.

Definition 4.23: A GTS (X, λ) is said to be

- λ-b-closed compact if every λ-b-closed cover of X has a finite subcover.
- nearly λ-compact if every λ-regular open cover of X has a finite subcover.

Theorem 4.24: The almost contra (b, μ)-continuous images of λ -b-closed compact spaces are nearly μ -compact.

Proof: Suppose that $f : (X, \lambda) \rightarrow (Y, \mu)$ is almost contra (b, μ) -continuous surjection. Let $\{M_i : i \in I\}$ be any μ -regular open cover of Y. Since f is almost contra (b, μ) -continuous, then $\{f^{-1}(M_i) : i \in I\}$ is a λ -b-closed cover of X. Since X is λ -b-closed compact, there exists a finite subset I0 of I such that $X = \cup \{f^{-1}(M_i) : i \in I_0\}$. Therefore, we have $Y = \cup \{M_i : i \in I_0\}$ and Y is nearly μ -compact.

Definition 4.25: Let $f: (X, \lambda) \rightarrow (Y, \mu)$ be a function. Then f is said to be

- (σ, μ)-open if the image of every λ-open set of X is μsemi-open in Y,
- (π, μ)-open if the image of every λ-open set of X is μpreopen in Y,
- (α, μ)-open if the image of every λ-open set of X is μα-open in Y,
- (β, μ)-open if the image of every λ-open set of X is μβ-open in Y,
- (b, μ)-open if the image of every λ-open set of X is μb-open in Y,
- (λ-LC, μ) open if the image of every λ-open set of X is μ-locally μ-closed set in Y.

Theorem 4.26: Let f: $(X, \lambda) \rightarrow (Y, \mu)$, where Y is a λ -extremally disconnected space be a function. Then the following properties are equivalent.

- $f is(\lambda, \mu)$ -open.
- f is (α, μ) -open and $(\lambda$ -LC, $\mu)$ open.
- f is (π, μ) -open and $(\lambda$ -LC, $\mu)$ open.
- f is (σ, μ) -open and $(\lambda$ -LC, $\mu)$ open.
- f is (b, μ)-open and (λ -LC, μ) open.

Proof: It is obvious.

Definition 4.27: Let (X, λ) and (Y, μ) be GTS's. Then a function $f : (X, \lambda) \rightarrow (Y, \mu)$ is said to be almost (λ, μ) -continuous if the inverse image of every μ -regular open set in Y is λ -open in X.

- almost (α, μ)-continuous if the inverse image of every μ-regular open set in Y is λ-α-open in X.
- almost (σ, μ)-continuous if the inverse image of every μ-regular open set in Y is λ-semi-open in X.
- almost (π, μ)-continuous if the inverse image of every μ-regular open set in Y is λ-preopen in X
- almost (b, μ)-continuous if the inverse image of each μ-regular open set in Y is λ-b-open in X.
- almost (λ-LC, μ)-continuous if the inverse image of each μ-regular open set in Y is λ-locally λ-closed in X.

Theorem 4.28: Let $f : (X, \lambda) \rightarrow (Y, \mu)$, where Y is a λ -extremally disconnected space be a function. Then the following properties are equivalent.

- f is aalmost (λ, μ) -continuous.
- f is almost (α, μ)-continuous and almost (λ-LC, μ)continuous.
- fis almost (π, μ)-continuous and almost (λ-LC, μ)continuous.
- f is almost (σ, μ)-continuous and almost (λ-LC, μ)continuous.
- f is almost (b, μ)-continuous and almost (λ-LC, μ)continuous.

Definition 4.29: Let (X, λ) and (Y, μ) be GTS's. Then a function $f: (X, \lambda) \rightarrow (Y, \mu)$ is said to be almost contra $(\lambda$ -LC, μ)-continuous if the inverse image of each μ -regular closed set in Y is λ -locally λ -closed in X.

Theorem 4.30: Let $f : (X, \lambda) \rightarrow (Y, \mu)$, where Y is a λ -extremally disconnected space be a function. Then the following properties are equivalent.

- f is a almost contra (λ, μ) -continuous.
- f is almost contra (α, μ)-continuous and almost contra (λ-LC, μ)-continuous.
- f is almost contra (π, μ)-continuous and almost contra (λ-LC, μ)-continuous.
- f is almost contra (σ, μ)-continuous and almost contra (λ-LC, μ)-continuous.
- f is almost contra (b, μ)-continuous and almost contra (λ-LC, μ)-continuous.

Proof: It is obvious.

REFERENCES

- Csaszar, A., 1997. Generalized open sets, Acta Math. Hungar., 75(1-2) (1997), 65-87, doi: 10.1023/A:1006582718102.
- Csaszar, A., 2005. Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (1-2) (2005), 53-66, doi: 10.1007/s10474-005-0005-5.
- Acsaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357, doi: 10.1023/A:1019713018007.
- Min, W.K., 2009. Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128 (4) (2009), 299-306, doi: 10.1007/s10474-009-9037-6.
- Min, W.K., 2009. Almost continuity on generalized topological spaces, Acta Math. Hungar., 125(1-2) (2009), 121-125, doi: 10.1007/s10474-009-8230-y.
- Min, W.K., 2005. Some results on generalized topological spaces and generalized systems, Acta Math. Hungar., 108 (1-2) (2005), 171-181, doi: 10.1007/s10474-005-0218-7.
- Jayanthi, D., 2012. Contra continuity on generalized topological spaces, Acta Math. Hungar., (2012), 1-9, doi: 10.1007/s10474-012-0211-x.

- Sivagami, P., 2008. Remarks on ã-interior, Acta Math. Hungar., 119(1-2) (2008), 81-94, doi: 10.1007/s1 047-007-7007-4.
- Min, W.K., 2008. Weak continuity on generalized topological spaces, Acta Math. Hungar., 124(1-2) 2008, 73-81, doi:10.1007/s10474-008-8152-0.
- Sarma, R.D., 2012. On extremally disconnected generalized topologies, Acta Math. Hungar., 134 (4)(2012), 583-588, doi: 10.1007/s10474-011-0153-8.
- 11. Jamunarani, R. and P. Jeyanthi, 2012. Regular sets in generalized topological spaces, Acta Math. Hungar., 135 (4) (2012), 342-349, doi: 10.1007/s10474-011-0179-y.
- Shen, R.X., 2008. A note on generalized connectedness, Acta Math. Hungar., 122(3) (2008), 231-235, doi: 10.1007/s10474-008-8009-6.
- Santhi, P., R. Poovazhaki and O. Ravi, XXXX. On Slightly (b, μ)-Continuous Functions, submitted.
- Al-omari, A. and T. Noiri, 2011. A unified theory of contra-(μ, λ)-continuous functions in generalized topological spaces, Acta Math. Hungar., 135 (1-2) (2011), 31-41, doi: 10.1007/s10474-011-0143-x.