Middle-East Journal of Scientific Research 25 (2): 352-357, 2017 ISSN 1990-9233 © IDOSI Publications, 2017 DOI: 10.5829/idosi.mejsr.2017.352.357

Pseudo Fuzzy Coset of a Fuzzy HX Ideal of a HX Ring

¹R. Muthuraj and ²N. Ramila Gandhi

¹Department of Mathematics, H.H.The Rajah's College, Pudukkottai- 622001,Tamilnadu, India ²Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624622, Tamilnadu, India

Abstract: The purpose of this paper is to develop a new approach to the concept of pseudo fuzzy coset of a fuzzy HX ideal of a HX ring. The aim is to study the properties of pseudo fuzzy coset of a fuzzy HX left ideal as well as fuzzy HX right ideal of a HX ring.

Key words: HX ring • Fuzzy HX right ideal • Fuzzy HX left ideal • Pseudo fuzzy coset of a fuzzy HX ideal

INTRODUCTION

In 1965, Lotfi. A. Zadeh [1] introduced the concept of fuzzy set. Fuzzy sets attracted many mathematicians and grew enormously by finding applications in many areas. In 1982 Wang-jin Liu [2] introduced the concept of fuzzy subring and fuzzy ideal. In 1988, Professor Li Hong Xing [3] proposed the concept of HX ring and derived some of its properties, then Professor Zhong [4, 5] gave the structures of HX ring on a class of ring. W.B.Vasantha kandasamy [6] introduced the concept of fuzzy cosets.

Pseudo Fuzzy Coset of a Fuzzy HX Ideal of a HX Ring: In this section, we introduce the notion of pseudo fuzzy cosets of a fuzzy HX ideal and discuss its properties.

Definition 2.1: Let μ be a fuzzy set defined on R. Let $\mathfrak{N} \subset 2^{\mathbb{R}} - \{ \phi \}$ be a HX ring. Let λ^{μ} be a fuzzy HX right ideal of a HX ring \mathfrak{N} and $A \in \mathfrak{N}$. Then the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$ is denoted as $(A + \lambda^{\mu})^{\mathsf{P}}$ is defined by

 $(A + \lambda^{\mu})^{P}(X) = p(A) \lambda^{\mu}(X) \text{ for every } X \in \mathfrak{N} \text{ and for some } p \in P, \text{ where } P = \{ p(X) / p(X) \in [0,1] \text{ for all } X \in \mathfrak{N} \}.$

Definition: 2.2 Let μ be a fuzzy set defined on R. Let $\mathfrak{N} \subset 2^{\mathbb{R}} - \{\varphi\}$ be a HX ring. Let λ^{μ} be a fuzzy HX left ideal of a HX ring \mathfrak{N} and $A \in \mathfrak{N}$. Then the pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$ is denoted as $(A + \lambda^{\mu})^{\mathbb{P}}$ and is defined by

$$\begin{split} (A + \lambda^{\mu})^{P}(X) &= p(A) \ \lambda^{\mu}(X) \ \text{for every} \ X \in \mathfrak{N} \ \text{and for some} \\ p \in P, \ \text{where} \ P &= \{ \ p(X) \ / \ p(X) \in [0,1] \ \text{for all} \ X \in \mathfrak{N} \}. \end{split}$$

Definition 2.3: Let μ be a fuzzy set defined on R. Let $\mathfrak{N} \subset 2^{\mathbb{R}} - \{ \varphi \}$ be a HX ring. Let λ^{μ} be a fuzzy HX ideal of a HX ring \mathfrak{N} and $A \in \mathfrak{N}$. Then the pseudo fuzzy coset of a fuzzy HX ideal λ^{μ} of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$ is denoted as $(A + \lambda^{\mu})^{P}$ and is defined as $(A + \lambda^{\mu})^{P}$ is both the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$ and the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$ and the pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$.

Theorem 2.4: Let λ^{μ} be a fuzzy HX right ideal of a HX ring \mathfrak{R} . Let $(A + \lambda^{\mu})^{p}$ be a pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \mathfrak{R} , then $(A + \lambda^{\mu})^{p}$ is a fuzzy HX right ideal of a HX ring \mathfrak{R} .

Proof: Let λ^{μ} be a fuzzy HX right ideal of a HX ring \Re .

Let $(A + \lambda^{\mu})^{p}$ be a pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \Re .

For every X, Y, A $\in \Re$ we have i. $(A + \lambda^{\mu})^{p} (X-Y) = p(A) \lambda^{\mu} (X-Y)$ $\geq p(A) \min \{ \lambda^{\mu} (X), \lambda^{\mu} (Y) \}$ $= \min \{p(A)\lambda^{\mu} (X), p(A) \lambda^{\mu} (Y)\}$ $= \min \{(A+\lambda^{\mu})^{p} (X), (A+\lambda^{\mu})^{p} (Y)\}$ Therefore, $(A+\lambda^{\mu})^{p} (X-Y) \geq \min \{(A+\lambda^{\mu})^{p} (X), (A+\lambda^{\mu})^{p} (Y)\}$ ii. $(A + \lambda^{\mu})^{p} (XY) = p(A) \lambda^{\mu} (XY)$

Corresponding Author: R. Muthuraj, PG & Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai- 622001,Tamilnadu, India. $\geq p(A) \lambda^{\mu}(X)$ $= (A + \lambda^{\mu})^{p}(X).$ Therefore, $(A + \lambda^{\mu})^{p}(XY) \geq (A + \lambda^{\mu})^{p}(X).$ Hence, $(A + \lambda^{\mu})^{p}$ is a fuzzy HX right ideal of a HX ring \mathfrak{N} .

Theorem 2.5: Let λ^{μ} be a fuzzy HX left ideal of a HX ring \mathfrak{N} . Let $(A + \lambda^{\mu})^{p}$ be a pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \mathfrak{N} , then $(A + \lambda^{\mu})^{p}$ is a fuzzy HX left ideal of a HX ring \mathfrak{N} .

Proof: Let λ^{μ} be a fuzzy HX left ideal of a HX ring \Re .

Let $(A + \lambda^{\mu})^{p}$ be a pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \Re .

For every X, Y,A $\in \mathfrak{N}$ we have i. $(A + \lambda^{\mu})^{p} (X-Y) = p(A) \lambda^{\mu} (X-Y)$ $\geq p(A) \min \{ \lambda^{\mu} (X), \lambda^{\mu} (Y) \}$ $= \min \{p(A)\lambda^{\mu} (X), p(A) \lambda^{\mu} (Y) \}$ $= \min \{(A + \lambda^{\mu})^{p} (X), (A + \lambda^{\mu})^{p} (Y) \}$ Therefore, $(A + \lambda^{\mu})^{p} (X-Y) \geq \min \{(A + \lambda^{t})^{p} (X), (A + \lambda^{t})^{p} (Y) \}$ ii. $(A + \lambda^{\mu})^{p} (XY) = p(A) \lambda^{\mu} (XY)$ $\geq p(A) \lambda^{\mu} (Y)$ $= (A + \lambda^{\mu})^{p} (Y).$ Therefore, $(A + \lambda^{\mu})^{p} (XY) \geq (A + \lambda^{\mu})^{p} (Y).$

Hence, $(A + \lambda^{\mu})^{P}$ is a fuzzy HX left ideal of a HX ring \Re .

Theorem 2.6: Let λ^{μ} be a fuzzy HX ideal of a HX ring \Re .

Let $(A + \lambda^{\mu})^{p}$ be a pseudo fuzzy coset of a fuzzy HX ideal λ^{μ} of a HX ring \mathfrak{R} , then $(A + \lambda^{\mu})^{p}$ is a fuzzy HX ideal of a HX ring \mathfrak{R} .

Proof: It is clear.

Theorem 2.7: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX right ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{p} \cap (A + \gamma^{\eta})^{p}$ is a fuzzy HX right ideal of \Re .

Proof: Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX right ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.4, $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ are fuzzy HX right ideals of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$.

By Theorem 3.3 [10], $(A + \lambda^{\mu})^{p} \cap (A + \gamma^{\eta})^{p}$ is a fuzzy HX right ideals of \mathfrak{R} determined by the element $A \in \mathfrak{R}$.

Theorem 2.8: Let μ and η be any two fuzzy sets defined on R. Let

 $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of fuzzy HX left ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{p} \cap (A + \gamma^{\eta})^{p}$ is a fuzzy HX left ideal of \Re .

Proof: Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX left ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.5, $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ are fuzzy HX left ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 4.3 [10], $(A + \lambda^{\mu})^{p} \cap (A + \gamma^{\eta})^{p}$ is a fuzzy HX left ideals of \mathfrak{R} determined by the element $A \in \mathfrak{R}$.

Theorem 2.9: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX ideals λ^{μ} and γ^{η} of a HX ring \mathfrak{R} determined by the element $A \in \mathfrak{R}$. Then $(A + \lambda^{\mu})^{P} \cap (A + \gamma^{\eta})^{P}$ is a fuzzy HX ideal of \mathfrak{R} .

Proof: It is clear.

Theorem 2.10: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX right ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \cup (A + \gamma^{\eta})^{P}$ is a fuzzy HX right ideal of \Re .

Proof: Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX right ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.4, $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ are fuzzy HX right ideals of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$.

By Theorem 3.4 [10], $(A + \lambda^{\mu})^{p} \cup (A + \gamma^{\eta})^{p}$ is a fuzzy HX right ideals of \Re determined by the element $A \in \Re$.

Theorem 2.11: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX left ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{p} \cup (A + \gamma^{\eta})^{p}$ is a fuzzy HX left ideal of \Re .

Proof: Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of fuzzy HX left ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.5, $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ are fuzzy HX left ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 4.4 [10], $(A + \lambda^{\mu})^{p} \cup (A + \gamma^{\eta})^{p}$ is a fuzzy HX left ideal of \Re determined by the element $A \in \Re$.

Theorem 2.12: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of fuzzy HX ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \cup (A + \gamma^{\eta})^{P}$ is a fuzzy HX ideal of \Re .

Proof: It is clear.

Theorem 2.13: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX right ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{p} \times (A + \gamma^{\eta})^{p}$ is a fuzzy HX right ideal of $\Re \times \Re$.

Proof: Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX right ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.4, $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ are fuzzy HX right ideals of a HX ring \mathfrak{N} determined by the element $A \in \mathfrak{N}$.

By Theorem 3.5 [10], $(A + \lambda^{\mu})^{p} \times (A + \gamma^{\eta})^{p}$ is a fuzzy HX right ideal of $\Re \times \Re$.

Theorem 2.14: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX left ideals λ^{μ} and γ^{η} of a HX ring \mathfrak{R} determined by the element $A \in \mathfrak{R}$. Then $(A + \lambda^{\mu})^{P} \times (A + \gamma^{\eta})^{P}$ is a fuzzy HX left ideal of $\mathfrak{R} \times \mathfrak{R}$.

Proof: Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX left ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 3.5, $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ are fuzzy HX left ideals of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 4.5 [10], $(A + \lambda^{\mu})^{p} \times (A + \gamma^{\eta})^{p}$ is a fuzzy HX left ideal of $\Re \times \Re$.

Theorem 2.15: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{p}$ and $(A + \gamma^{\eta})^{p}$ be any two pseudo fuzzy coset of a fuzzy HX ideals λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{p} \times (A + \gamma^{\eta})^{p}$ is a fuzzy HX ideal of $\Re \times \Re$.

Proof: It is clear.

Homomorphism and Anti Homomorphism of a Pseudo Fuzzy Coset of a Fuzzy Hx Ideal of a Hx Ring: In this section, we introduce the concept of an image, pre-image of pseudo fuzzy coset of a HX ring and discuss the properties of homomorphic and anti homomorphic images and pre images of pseudo fuzzy coset of a fuzzy HX ideal λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

Theorem 3.1: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be a homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^p)$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism onto HX rings.

Let $(A+\lambda^{\mu})^{p}$ be the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \Re_{1} determined by the element $A \in \Re_{1}$.By Theorem, if λ^{μ} is a fuzzy HX right ideal of \Re_{1} then f (λ^{μ}) is a fuzzy HX right ideal of \Re_{2} , if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

 $f((A + \lambda^{\mu})^{p})$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$.

Let A,
$$X \in \mathfrak{R}_{1}$$
, then f(A), f(X) $\in \mathfrak{R}_{2}$.
Now, $(f(A) + f(\lambda^{\mu}))^{p} f(X) = p(f(A))(f(\lambda^{\mu})(f(X))$
 $= p(A) \lambda^{\mu} (X)$
 $= (A + \lambda^{\mu})^{p} (X)$
 $= f((A + \lambda^{\mu})^{p}) f(X)$.
(f(A) + f(λ^{μ}))^p f(X) $= f((A + \lambda^{\mu})^{p}) f(X)$,
for any f(X) $\in \mathfrak{R}_{2}$.
Hence, f((A + $\lambda^{\mu})^{p}$) $= (f(A) + f(\lambda^{\mu}))^{p}$.

Theorem 3.2: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be a homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^p)$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism onto HX rings.

Let $(A + \lambda^{\mu})^{p}$ be the pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \Re_{1} determined by the element $A \in \Re_{1}$.By theorem, if λ^{μ} is a fuzzy HX left ideal of \Re_{1} then f (λ^{μ}) is a fuzzy HX left ideal of \Re_{2} , if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

 $f((A + \lambda^{\mu})^{p})$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$.

Let A,
$$X \in \mathfrak{R}_1$$
, then f(A), $f(X) \in \mathfrak{R}_2$.
Now, $(f(A) + f(\lambda^{\mu}))^p f(X) = p(f(A))(f(\lambda^{\mu})(f(X))$
 $= p(A) \lambda^{\mu} (X)$
 $= (A + \lambda^{\mu})^p (X)$
 $= f((A + \lambda^{\mu})^p)f(X)$.
(f(A) + f(λ^{μ}))^p f(X)= f((A + $\lambda^{\mu})^p)f(X)$,
for any f(X) $\in \mathfrak{R}_2$.
Hence, $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$.

Theorem 3.3: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_{\Gamma} \Re$ be a homomorphism onto HX rings. Let $(A + \lambda^{\mu})^{p}$ be the pseudo fuzzy coset of a fuzzy HX ideal λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^{p})$ is the pseudo fuzzy coset of a fuzzy HX ideal $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^{p}) = (f(A) + f(\lambda^{\mu}))^{p}$,

if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: It is clear.

Theorem 3.4: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be a homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy HX right ideal η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$. Then f^1 $((B + \eta^P))$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$ and

 $f^{-1}((B + \eta^{\alpha})^{p}) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}.$

Proof: Let f: $\Re_1 \rightarrow \Re_2$ be a homomorphism on HX rings.

Let $(B + \eta^{\alpha})^p$ be the pseudo fuzzy coset of a fuzzy HX right ideal η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$. By Theorem, if η^{α} is a fuzzy HX right ideal of \Re_2 then $f^{-1}(\eta^{\alpha})$ is a fuzzy HX right ideal of \Re_1 . $f^{-1}((B + \eta^{\alpha})^p)$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$.

Let $X \in \mathfrak{N}_1$ and $B \in \mathfrak{N}_2$. Now, $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p (X) = p(f^{-1}(B))(f^{-1}(\eta^{\alpha}))(X)$ $= p(B)(\eta^{\alpha}(f(X)))$ $= (B + \eta^{\alpha})^p f(X)$ $= f^{-1}((B + \eta^{\alpha})^p)(X)$ $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p (X) = f^{-1}((B + \eta^{\alpha})^p)(X)$ Hence, $f^{-1}((B + \eta^{\alpha})^p) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p$.

Theorem 3.5: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be a

homomorphism on HX rings. Let $(B + \eta^{\alpha})^{p}$ be the pseudo fuzzy coset of a fuzzy HX left ideal η^{α} of a HX ring \Re_{2} determined by the element $B \in \Re_{2}$. Then $f^{-1}((B + \eta^{\alpha})^{p})$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_{1} determined by the element $f^{-1}(B) \in \Re_{1}$ and f $^{-1}((B + \eta^{\alpha})^{p}) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}$.

Proof: Let $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism on HX rings.

Let $(B + \eta^{\alpha})^{p}$ be the pseudo fuzzy coset of a fuzzy HX left ideal η^{α} of a HX ring \Re_{2} determined by the element $B \in \Re_{2}$.By Theorem if η^{α} is a fuzzy HX left ideal of \Re_{2} then

 $f^{-1}(\eta^{\alpha})$ is a fuzzy HX left ideal of \Re_1 . $f^{-1}((B + \eta^{\alpha})^p)$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$.

Let $X \in \mathfrak{N}_1$ and $B \in \mathfrak{N}_2$. Now, $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p (X) = p(f^{-1}(B))(f^{-1}(\eta^{\alpha}))(X)$ $= p(B)(\eta^{\alpha}(f(X)))$ $= (B + \eta^{\alpha})^p f(X)$ $= f^{-1}((B + \eta^{\alpha})^p)(X)$ $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p (X) = f^{-1}((B + \eta^{\alpha})^p)(X)$ Hence, $f^{-1}((B + \eta^{\alpha})^p) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p$.

Theorem 3.6: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let f: $\Re_1 \rightarrow \Re_2$ be a homomorphism on HX rings. Let $(B + \eta^{\alpha})^p$ be the pseudo fuzzy coset of a fuzzy HX ideal η^{α} of a HX ring \Re_2 determined by the element

B∈ \Re_2 . Then $f^{-1}((B + \eta^{\alpha})^p)$ is the pseudo fuzzy coset of a fuzzy HX ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$ and $f^{-1}((B + \eta^{\alpha})^p) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p$.

Proof: It is clear.

Theorem 3.7: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^p)$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f: \mathfrak{N}_1 \to \mathfrak{N}_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX right ideal λ^{μ} of a HX ring \mathfrak{N}_1 determined by the element

A $\in \mathfrak{N}_1$. By Theorem, if λ^{μ} is a fuzzy HX right ideal of \mathfrak{N}_1 , then $f(\lambda^{\mu})$ is a fuzzy HX left ideal of \mathfrak{N}_2 , if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

 $f((A + \lambda^{\mu})^{p})$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$.

Let A, $X \in \mathfrak{N}_1$, then f(A), $f(X) \in \mathfrak{N}_2$. Now, $(f(A) + f(\lambda^{\mu}))^p f(X) = p(f(A))(f(\lambda^{\mu})(f(X)))$ $= p(A) \lambda^{\mu} (X)$ $= (A + \lambda^{\mu})^p (X)$ $= f((A + \lambda^{\mu})^p) f(X)$. $(f(A) + f(\lambda^{\mu}))^p f(X) = f((A + \lambda^{\mu})^p) f(X)$, for any $f(X) \in \mathfrak{N}_2$. Hence, $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$.

Theorem 3.8: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^p)$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f: \mathfrak{N}_1 \to \mathfrak{N}_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX left ideal λ^{μ} of a HX ring \mathfrak{N}_1 determined by the element $A \in \mathfrak{N}_1$.By Theorem if λ^{μ} is a fuzzy HX left ideal of \mathfrak{N}_1 , then $f(\lambda^{\mu})$ is a fuzzy HX right ideal of \mathfrak{N}_2 , if λ^{μ} has a supremum property and λ^{μ} is f-invariant. $f((A + \lambda^{\mu})^{\mu})$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f(\lambda^{\mu})$ of a HX ring \mathfrak{N}_2 determined by the element $f(A) \in \mathfrak{N}_2$.

Let A,
$$X \in \mathfrak{R}_{1}$$
, then f(A), $f(X) \in \mathfrak{R}_{2}$.
Now, $(f(A) + f(\lambda^{\mu}))^{p} f(X) = p(f(A))(f(\lambda^{\mu})(f(X)))$
 $= p(A) \lambda^{\mu} (X)$
 $= (A + \lambda^{\mu})^{p} (X)$
 $= f((A + \lambda^{\mu})^{p}) f(X)$
 $(f(A) + f(\lambda^{\mu}))^{p} f(X) = f((A + \lambda^{\mu})^{p}) f(X),$
for any $f(X) \in \mathfrak{R}_{2}$.
Hence, $f((A + \lambda^{\mu})^{p}) = (f(A) + f(\lambda^{\mu}))^{p}$.

Theorem 3.9: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^p$ be the pseudo fuzzy coset of a fuzzy HX ideal λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^p)$ is the pseudo fuzzy coset of a fuzzy HX ideal $f(\lambda^{\mu})$ of a HX ring

 \mathfrak{R}_2 determined by the element $f(A) \in \mathfrak{R}_2$ and $f((A + \lambda^{\mu})^p) = (f(A) + f(\lambda^{\mu}))^p$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: It is clear.

Theorem 3.10: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be an anti homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy HX right ideal η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$. Then $f^{-1}((B + \eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$ and $f^{-1}((B + \eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: Let f: $\mathfrak{N}_1 \rightarrow \mathfrak{N}_2$ be an anti homomorphism on HX rings.Let $(B + \eta^{\alpha})^p$ be the pseudo fuzzy coset of a fuzzy HX right ideal η^{α} of a HX ring \mathfrak{N}_2 determined by the element

 $B \in \Re_2.By$ Theorem η^{α} be a fuzzy HX right ideal of \Re_2 then

 $f^{-1}(\eta^{\alpha})$ is a fuzzy HX left ideal of \mathfrak{R}_1 . $f^{-1}((B + \eta^{\alpha})^p)$ is the pseudo fuzzy coset of a fuzzy HX left ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \mathfrak{R}_1 determined by the element $f^{-1}(B) \in \mathfrak{R}_1$.

Let $X \in \Re_1$ and $B \in \Re_2$. Now, $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p (X) = p(f^{-1}(B))(f^{-1}(\eta^{\alpha}))(X)$ $= p(B)(\eta^{\alpha}(f(X)))$ $= (B + \eta^{\alpha})^p f(X)$ $= f^{-1}((B + \eta^{\alpha})^p)(X)$ $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p (X) = f^{-1}((B + \eta^{\alpha})^p)(X).$ Hence, $f^{-1}((B + \eta^{\alpha})^p) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^p.$

Theorem 3.11: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \Re_1 \rightarrow \Re_2$ be an anti homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy HX left ideal η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$. Then $f^{-1}((B + \eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$ and $f^{-1}((B + \eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: Let f: $\mathfrak{N}_1 \rightarrow \mathfrak{N}_2$ be an anti homomorphism on HX rings. Let $(B + \eta^{\alpha})^p$ be the pseudo fuzzy coset of a fuzzy HX left ideal η^{α} of a HX ring \mathfrak{N}_2 determined by the element

 $B \in \Re_2.By$ Theorem, if η^α be a fuzzy HX left ideal of \Re_2 then

 $f^{-1}(\eta^{\alpha})$ is a fuzzy HX right ideal of \Re_1 . $f^{-1}((B + \eta^{\alpha})^p)$ is the pseudo fuzzy coset of a fuzzy HX right ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$.

Let $X \in \mathfrak{R}_1$ and $B \in \mathfrak{R}_2$.	
Now, $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}(X) = p(f^{-1}(B))(f^{-1}(\eta^{\alpha}))(X)$	
	$= p(B)(\eta^{\alpha}(f(X)))$
	$= (\mathbf{B} + \boldsymbol{\eta}^{\alpha})^{\mathrm{P}} \mathbf{f}(\mathbf{X})$
	$= f^{-1}((B + \eta^{\alpha})^{P})(X)$
$(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}(X)$	$= f^{-1}((B + \eta^{\alpha})^{P})(X)$
Hence, $f^{-1}((B+\eta^{\alpha})^{P})$	$= (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}.$

Theorem 3.12: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively.Let $f: \Re_{\neg \neg} \Re$ be an anti homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy HX ideal η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$.Then $f^{-1}((B + \eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy HX ideal $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$ and $f^{-1}((B + \eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: It is clear.

REFERENCES

- 1. Zadeh, L.A., 1965. Fuzzy sets, Information and Control, 8: 338-353.
- 2. Liu, W.J., 1982. Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8: 133-139.
- Li Hong Xing and HX ring, 1988. BUSEFAL, 34(1): 3-8, January 1988.
- Bing-xueYao and Yubin-Zhong, 2007. The construction of power ring, Fuzzy information and Engineering (ICFIE), ASC, 40: 181-187.
- 5. Bing-xueYao and Yubin-Zhong, 2009. Upgrade of algebraic structure of ring, Fuzzy information and Engineering, 2: 219-228.

- 6. Vasantha Kandasamy, W.B., 2003. Smarandahe Fuzzy Algebra, American ResearchPress.
- Manikandan, K.H., 2013. Muthuraj.R, Pseudo Fuzzy Cosets of a HX Group, Applied Mathematical Sciences, 7(86): 4259-4271.
- 8. Mashinchi, M. and M.M. Zahedi, 1990. On fuzzy ideals of a ring, J. Sci. I.R. Iran, 1(3): 208-210.
- 9. Mukherjee, T.K and M.K. Sen, 1987. On fuzzy ideals in rings, Fuzzy sets and Systems, 21: 99-104.
- 10. Muthuraj, R, N. Ramila Gandhi, 2014. Homomorphism and anti homomorphism of fuzzy HX ideals of a HX ring, Discovery, 21(65):,July 1, 2014, pp: 20-24.
- 11. Muthuraj, R., 2015. Ramila Gandhi.N, Pseudo fuzzy cosets of a HX ring, SS international Journal of Pure and Applied Mathematics, 1(1): 22-30.
- 12. Muthuraj, R. and N. Ramila Gandhi, 2016. Properties of fuzzy HX ideal of a HX ring, International Journal of Mathematics and its Applications, 4(2-B): 41-50.
- 13. Rajesh Kumar, 1993. Fuzzy Algebra, Publication division, University of Delhi, (1993).
- Rosenfeld. A., 1971. Fuzzy groups, J. Math. Anal., 35(1971): 512-517.
- 15. Young Bae Jun, Kyoung Ja Lee, 2012. Generalised fuzzy cosets and radicals, Applied Mathematical Sciences, 6(126): 6273-6280.