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Abstract: In this paper, we offer the notation of supra -closed sets, supra *g- closed sets, supra gsp-closed
sets in topological space and characterizations and properties of such new notions are studied. Also investigate
the relationship with other supra closed sets like supra g-closed.2010 Mathematics Subject Classifications:
54A10, 54A20.
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INTRODUCTION cl (A) =  { B: B is a supra closed and A  B};

Quiet recently,  the  study of supra topological defined as 
spaces is the order of the day. Many researchers are int (A) = {G: G is a supra open and A  G}. 
introducing many new notions and investigating the
properties and characterizations of such new notions. In Definition 2.3 [1]: Let (X, ) be a topological space and µ
line with the research, in this paper we introduce the be a supra topology on X. We call µ is a supra topology
concepts of supra -closed set and study their basic associated with if µ.
properties and investigate several properties of the new
notions. Definition 2.4: Let (X,µ) be a supra topological space. A

Preliminaries:  Throughout this paper (X, ), (Y, ) and Supra semi-open set [3] if A cl (int (A));
(Z, ) (or simply, X, Y and Z) denote topological spaces Supra -open set [3, 4] if A int (cl (int (A)));
on which no separation axioms are assumed unless supra pre-open set [4] if A int (cl (A)).
explicitly stated. supra -open set [5] if A  cl (int (cl (A)));

Definition   2.1   [1, 2]:   Let   X   be   a   non-empty   set. The complements of the above mentioned open sets
The subfamily µ  P(X) where P(X) is the power set of X are called their respective closed sets. 
is said to be a supra topology on X if X µ and µ is closed
under arbitrary unions. Definition 2.5: Let (X, µ) be a supra topological space. A

The pair (X, µ) is called a supra topological space. Supra g-closed [6] if cl (A)  U whenever A U and
The elements of µ are said to be supra open in (X, µ). U is supra open in (X, µ).
Complements of supra open sets are called supra Supra sg-closed [7] if scl (A) U whenever A U and

closed sets. U is supra semi-open in (X, µ).

Definition 2.2 [3]: U is supra open in (X, µ).
Let A be a subset of (X, µ). Then supra  g -closed  (resp. supra g-closed) [8] if

The supra closure of a set A is, denoted by cl (A), cl (A)  U whenever A  U and U is  supra -openµ

defined as (resp. supra open) in (X, µ). 

µ

The supra interior of a set A is, denoted by int (A),µ

µ

subset A of X is called
µ µ

µ µ µ

µ µ

µ µ µ

subset A of X is called
µ

µ

Supra gs-closed [7] if scl (A)  U whenever A U andµ

µ
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Supra -closed [9] if  cl (A) U whenever A U and Example 3.8: Consider the Example 3.3. Here {c,d} isµ

U is supra semi-open in (X, µ).
Supra *g-closed [10]  if  cl (A) U whenever A Uµ

and U is supra -open in (X, µ).
3. Supra -closed set

Definition 3.1: Let (X, µ) be a topological space. A subset
A of X is called 

(i) a supra s-closed set if scl (A)  U whenever A  Uµ

and U is supra gs -open in X.#

(ii) a supra -closed set if cl (A)  U whenever A Uµ

and U is supra gs -open in X.#

Proposition 3.2: Every supra closed is supra -closed.

Proof: Let A  X be supra closed set and A  U, where U
is supra gs-open. Since A is supra closed A=cl (A)  U.# µ

Thus A is supra -closed.
Converse of the above proposition need not be true

as seen from the following example.

Example 3.3: Let X= {a,b,c,d} with µ = {X, , {a},{a,c},
{b,c}, {a,b,c}}. It is evident that {a,b,d} is supra -
closed set but not supra-closed.

Proposition 3.4: Every supra -closed set is supra -
closed.

Proof: It follows from the fact that, every supra semi-open
set is supra gs-open#

Proposition 3.5: Every supra -closed set is supra g-
closed but not conversely.

Proof: It follows from the fact that, every supra-open set
is supra semi-open.

Example 3.6: Consider Example 3,3. Here {a,c,d} is supra
g-closed but not supra -closed.

Proposition 3.7: Every supra -closed set is suprags-
closed, supra gsp-closed and hence supra rg-closed but
not conversely.

Proof: Let A be supra -closed set. Then by proposition
3.4 and 3.5, A is supra g-closed. It is evident that every
supra g-closed set is supra gs-closed, supra gsp-closed
and supra rg-closed. By proposition 3.5. A is supra gs-
closed, supra gsp-closed and supra rg-closed.

supra gs-closed supra gsp-closed and supra rg-closed set
but not supra -closed set.

Proposition:  3.9:  Every   supra -closed   set. is
supra s-closed but not conversely.

Proof: It follows from the fact that scl (A)  cl (A)µ µ

Example 3.10: Consider the Example 3.3, Here {b} is supra
s-closed set but not supra -closed.

Proposition 3.11: Every supra -closed set is supra gs-#

closed but not conversely.

Proof: Every supra s-closed is supra gs-closed and by#

Proposition 3.9, the proof follows.

Example 3.12: Consider Example 3.3, Here {a} is supra
gs-closed but not supra -closed.#

Proposition 3.13: Every supra -closed set is supra sg-
closed but not conversely.

Proof: It follows from the fact that every supra semi-open
set is supra gs-open and scl (A) cl (A).# µ µ

Example 3.14: Let X= {a,b,c,d} with µ= {X, ,{a,d},{b,d},
{a,b,d},{{a,c,d}. It is evident that {a} is supra sg-closed
but not supra -closed.

Proposition 3.15:  Every  supra -closed  set  is  supra
g -closed but not conversely.

Proof: It follows from the fact, every supra open set is
supra semi-open and cl (A) cl (A).µ µ

Example 3.16: Consider Example 3.14. Here {a} is supra
g -closed set but not supra -closed.

Remark 3.17: The following Example shows that supra
-closed sets are independent of supra -closed sets and

supra semi-closed sets.

Example 3.18: Let X={a,b,c,d} with µ={X, ,{a}, {b,c},
{a,c}, {a,b,c}}.Here {a,b,d} is supra -closed set but not
supra -closed and supra semi-closed. Also {b} is supra

-closed and supra semi closed but not supra -
closedset.
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Remark 3.19: The above discussions, we have the Proposition 3.24: Let (X, µ) be supra topological space.
following diagram

Theorem 3.20: Let (X,µ) be supra topological space. Aset
A is supra -closed set then cl (A)\ A contains no nonµ

empty closed set in X.

Proof: Let (X,µ) be supra topological space. Suppose that
A is supra -closed. Let F be a supra closed subset of
cl (A)\A. Then A  F . But A is supra -closed.µ c

Therefore, cl (A) F .Consequently, F  (cl (A)) . We haveµ c µ c

F cl (A). Thus F cl (A) (cl (A)) and F is empty.µ µ µ c

The converse of the above theorem is not true.

Example 3.21: Consider Example 3.3. If A={c,d} then
cl (A)\A={b} does not contain non empty closed set, Butµ

A is not supra -closed set.

Theorem  3.22:  Let  (X,µ)  be  supra  topological  space.
A set A is supra -closed if and only if cl (A)\A containsµ

no non empty supra gs-closed set#

Proof
Necessity: If A is supra -closed. Let F be a supra gs#

–closed set such that F cl (A)\A. Since F  is supra #gs-µ c

open and A  F . Since A is supra -closed. We havec

cl (A) F .consequently, F  (cl (A)) . This implies that Fµ c µ c

cl (A)  (cl (A)) =µ µ c

Sufficiency: Let A  U, where U is supra gs-open. If#

cl (A) is not contained in  U.  Then  cl (A)   U .µ µ c

Now because cl (A) U  cl (A)\A and cl (A) U  is aµ c µ µ c

non- empty supra gs closed. We obtain contradiction.#

Therefore cl (A)  U. Hence A is supra -closed.µ

Theorem 3.23: Let (X, µ) be supra topological space. A
set A is supra -closed and A  B cl (A) then B isµ

supra -closed.

Proof: Let A be supra -closed. Since B cl (A), we haveµ

cl (B) cl (A). Then cl (B)\B cl (A)\A. Since cl (A) \Aµ µ µ µ µ

has no non-emptysupra gs-closed subset neither does#

cl (B)\B. By theorem 3.22, B is supra -closed.µ

Let A  Y  X and suppose that A is supra -closed
then A is supra -closed relative to Y.

Proof: Let A Y F, where F is supra gs –open. A F#

and hence cl (A)  F.This implies that Y cl (A)  Y G.µ µ

Thus A is supra -closed relative to Y.

Proposition  3.25: Let (X,µ) be supra topological space.
If A is a supra gs-open and supra -closed set. Then A#

is supra closed in X.

Proof: Since A is supra gs–openand supra -#

closed,cl (A)  A and hence A is supra closed in X.µ

Definition   3.26:   Let   (X,µ)   be   supra   topological
space  A  subset  A  is  said  to  be  supra  locally closed
if A= U F. Where U is supra open and F is supra closed
in X.

Theorem 3.27: Let (X,µ) be supra topological space. The
following properties are equivalent

A is supra closed.
A is supra locally closed and supra -closed.
A is supra locally closed and supra g-closed

Proof: It is obivious that (i) => (ii) =>(iii).
Now we have to show the implication (iii) => (i).

Suppose that A is supra locally closed and supra g-closed
then it follows that A  (X\cl (A)) is an supra open set ofµ

X, since A is supra locally closed. Since A is supra g-
closed and A A (X \cl (A)),we obtain cl (A)µ µ

A (X\cl (A)). Thus we have cl (A)  A and hence A isµ µ

supra closed.

4. Supra -open set.

Definition:  4.1:  Let  (X,µ)  be  supra  topological  space.
A set A is called supra -open in X if A  is supra -c

closed in X.

Theorem 4.2: Let (X, µ) be supra topological space. A set
A is supra -open in X if and only if F int (A) wheneverµ

F is supra gs-closed and F  A.#

Proof: Suppose F int (A) where F is supra gs-closedµ #

and F  A. Let A  G where G is supra gs-open. Then Gc # c

A and G int (A). Thus A  is supra -closed set in X.c µ c

Hence A is supra -open in X.
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