Middle-East Journal of Scientific Research 25 (2): 335-340, 2017 ISSN 1990-9233 © IDOSI Publications, 2017 DOI: 10.5829/idosi.mejsr.2017.335.340

A Study on Intuitionistic Multi-Fuzzy Ideals in BG-Algebra

¹R. Muthuraj and ²S. Devi

¹PG and Research Department of Mathematics, H.H. The Rajah's College, Pudhukottai-622001, Tamilnadu, India ²Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624622, Tamilnadu, India

Abstract: The purpose of this paper is to implement the concept of intuitionistic multi-fuzzy sets to ideals in BG-algebra. In this paper, we introduce the notion of intuitionistic multi-fuzzy ideals, intuitionistic multi-fuzzy closed ideals in BG-algebra and investigate some of their related properties. Also we discuss the relation between intuitionistic multi-fuzzy ideals and intuitionistic multi-fuzzy closed ideals of BG-algebra. Finally we define the upper level subset of intuitionistic multi-fuzzy ideals of BG-algebra and study some of its properties based on (α , β)-cut.

Key words: BG-algebra · BG-ideal · Multi-fuzzy set · Intuitionistic multi-fuzzy set · Intuitionistic multi-fuzzy BG-ideal · Intuitionistic multi-fuzzy closed ideal · Level subset · Homomorphism

INTRODUCTION

The notion of a fuzzy subset was initially introduced by Zadeh [1] in 1965, for representing uncertainity. The idea of intuitionistic fuzzy set was first published by Atanassov [2], as a generalization of the notion of the fuzzy set. In 2000, S.Sabu and T.V.Ramakrishnan [3, 4] proposed the theory of multi-fuzzy sets in terms of multidimensional membership functions and investigated some properties of multi-level fuzziness. Theory of multifuzzy set is an extension of theory of fuzzy sets. Complete characterization of many real life problems can be done by multi-fuzzy membership functions of the objects involved in the problem.

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK algebras and BCI-algebras [5-7]. It is shown that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J.Neggers and H.S.Kim [8] introduced a new notion, called a B-algebra. In 2005, C.B.Kim and H.S.Kim [9] introduced the notion of a BG-algebra which is a generalization of B-algebras. With these ideas, fuzzy subalgebras of BG-algebra were developed by S.S.Ahn and H.D.Lee [10]. R.Muthuraj and S.Devi [11, 12] introduced the concept of multi-fuzzy subalgebras and intuitionistic multi-fuzzy subalgebras in BG-algebra in 2016. In this paper, we define a new algebraic structure of intuitionistic multi-fuzzy ideals and intuitionistic multi-fuzzy closed ideals of BG-algebra and discuss some of their related properties based on level subsets. Also we investigate the properties of intuitionistic multi-fuzzy ideals of BG-algebra under homomorphism.

Preliminaries: In this section, the basic definitions of a BG-algebra, BG-ideal, multi-fuzzy sets are recalled. We start with.

Definition 2.1 [9, 10]: Let X be a non-empty set. A multifuzzy set A in X is defined as a set of ordered sequences: $A = \{(x, \mu_1(x), \mu_2(x),, \mu_k(x)): x \in X\}, \text{ where } \mu_i: X \rightarrow [0, 1] \text{ for all } i. \text{ Here } k \text{ is called the dimension of } A.$

Definition 2.2 [8]: Let X be a non-empty set. An intuitionistic fuzzy set(IFS) A in X is a set of the form A = $\{(x, \mu(x), \nu(x)) : x \in X\}$, where $\mu: X \rightarrow [0, 1]$ and $\nu: X \rightarrow [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively, with $0 \le \mu(x) + \nu(x) \le 1$.

Corresponding Author: R. Muthuraj, PG and Research Department of Mathematics, H.H. The Rajah's College, Pudhukottai-622001, Tamilnadu, India.

2

2

1

0

Definition 2.3 [11]: Let X be a non-empty set . An intuitionistic multi-fuzzy set A in X is a set of the form A = { (x, $\mu_A(x)$, $\nu_A(x)$): x \in X }, where $\mu_A(x) = (\mu_1(x), \mu_2(x), \mu_3(x))$, $\mu_k(x)$), $\nu_A(x) = (\nu_1(x), \nu_2(x),, \nu_k(x))$ and each μ_i : $X \rightarrow [0, 1], v_i: X \rightarrow [0, 1]$ with $0 \le \mu_i(x) + v_i(x) \le 1, x \in X$ for all $i = 1, 2, \dots, k$. Here $\mu_1(x) \ge \mu_2(x) \ge \dots, \ge \mu_k(x), x \in X$.

Remark: Note that although we arrange the membership sequence in decreasing order, the corresponding nonmembership sequence need not be in decreasing or increasing order.

Definition 2.4 [5]: A non-empty set X with a constant 0 and a binary operation "*" is called a BG-algebra if it satisfies the following axioms:

- x * x = 0
- x * 0 = x
- $(x * y) * (0 * y) = x, \forall x, y \in X.$

Example 2.5: Let $X = \{0, 1, 2\}$ be a set with the following table:

Table 2.1			
*	0	1	
0	0	1	
1	1	0	
2	2	2	

Then $(X; \in, 0)$ is a BG-algebra.

Definition 2.6 [5]: Let S be a non-empty subset of a BG-algebra X, then S is called a subalgebra of X if $x \in y \in$ S for all x, $y \in S$.

Definition 2.7: Let X be a BG-algebra and I be a subset of X. Then I is called a BG-ideal of X if it satisfies the following conditions:

- $0 \in I$
- $x * y \in I \text{ and } y \in I \Rightarrow x \in I$
- $x \in I$ and $y \in X \Rightarrow x * y \in I$

Definition 2.8 [6]: Let μ be a fuzzy set in a BG-algebra X. Then μ is called a fuzzy subalgebra of X if $\mu(x * y) \ge \min$ $\{\mu(x), \mu(y)\}, x, y \in X.$

Definition 2.9 [13]: An intuitionistic multi-fuzzy subset A = { (x, $\mu_A(x)$, $\nu_A(x)$): x \in X } in X is called an intuitionistic multi-fuzzy subalgebra of X if it satisfies:

- $\mu_A(x * y) \ge \min \{ \mu_A(x), \mu_A(y) \}$
- $v_A(x * y) \le \max \{ v_A(x), v_A(y) \}, x, y \in X$

Definition 2.10: A mapping f: $X \rightarrow Y$ of a BG-algebra is called a homomorphism if $f(x \cdot y) = f(x) \cdot f(y)$, $x, y \in X$.

Remark: If f: $X \rightarrow Y$ is a homomorphism of BG-algebra then f(0) = 0.

Definition 2.11: Let X and Y be any two non-empty sets and f: $X \rightarrow Y$ be a mapping. Let A and B be any two IMF subsets of X and Y respectively having the same dimension k. Then the pre-image of March 18, $2017B(\subseteq Y)$ under the map f is denoted by $f^{-1}(B)$ and it is defined as: $f^{-1}(B) = (\mu_B(f(x)), \nu_B(f(x))), x \in X.$

Definition 2.12 [11]: Let A = { ($x, \mu_A(x), \nu_A(x)$): $x \in X$ } and B = {(x, $\mu_B(x)$, $\nu_B(x)$): x \in X } be any two IMFS's having the same dimension k of X. Then.

- $A \subseteq B$ if and only if, $\mu_A(x) \le \mu_B(x)$, $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- A = B if and only if $\mu_A(x) = \mu_B(x)$, $\nu_A(x) = \nu_B(x)$ for all x €Х.
- $A \cap B = \{ (x, (\mu_{A \cap B})(x), (\nu_{A \cap B})(x)) : x \in X \}, \text{ where }$ $(\mu_{A\cap B})(x) = \min \{ \mu_A(x), \mu_B(x) \} = (\min \{ \mu_{iA}(x), \mu_{iB}(x) \})_{i=1}^k$ and $(v_{A \cap B})(x) = \max \{v_A(x), v_B(x)\} = (\max \{v_{iA}(x), v_{iB}(x)\})$ $v_{iB}(x)$)^k_{i=1}
- $A \cup B = \{ (x, (\mu_{AUB})(x), (\nu_{AUB})(x)) : x \in X \}, \text{ where }$ $(\mu_{AUB})(x) = \max \{ \mu_A(x), \mu_B(x) \} = (\max \{ \mu_{iA}(x), \mu_{iB}(x) \})_{i=1}^k$ and $(v_{AUB})(x) = \min \{ v_A(x), v_B(x) \} = (\min \{ v_{iA}(x), v_{iB}(x) \})$ $v_{iB}(x) \} _{i=1}^{k}$

Intuitionistic Multi-Fuzzy Ideals of BG-Algebra: In this section, we define the new notion of intuitionistic multi-fuzzy ideals and intuitionistic multi-fuzzy closed ideals of BG-algebra and discuss some of its properties.

Definition 3.1: An intuitionistic multi-fuzzy subset A = $\{(x, \mu_A(x), \nu_A(x)): x \in X\}$ in X is called an intuitionistic multi-fuzzy ideal of X if it satisfies:

- $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$
- $\mu_{A}(x) \geq min \ \{\mu_{A}(x \ * \ y), \ \mu_{A}(y)\}$
- $\nu_{\scriptscriptstyle A}(x) \le max \; \{\nu_{\scriptscriptstyle A}(x \ast y), \, \nu_{\scriptscriptstyle A}(y)\} \forall x, \, y \in X$

Example 3.2: Consider a BG-algebra $X = \{0, 1, 2, 3\}$ with the following table.

Then x, $y \in A$ and x, $y \in B$

Table 3.1					
*	0	1	2	3	
0	0	1	2	3	
1	1	0	3	2	
2	2	3	0	1	
3	3	2	1	0	

Let A = (μ_A, ν_A) be an intuitionistic multi-fuzzy subset in X defined as follows:

 $\mu_A(0) = \mu_A(1) = (1, 1), \ \mu_A(2) = \mu_A(3) = (0.7, 0.5)$ and $\nu_A(0) = \nu_A(1) = (0, 0), \ \nu_A(2) = \nu_A(3) = (0.2, 0.3)$

Then A is an intuitionistic multi-fuzzy ideal of X.

Theorem 3.3: Let $A = (\mu_A, \nu_A)$ be an intuitionistic multifuzzy ideal of a BG-algebra X. If $x * y \le z$ then $\mu_A(x) \ge \min \{\mu_A(y), \mu_A(z)\}$, $\nu_A(x) \le \max \{\nu_A(y), \nu_A(z)\}$ for all $x, y, z \in X$.

Proof:

 $\begin{array}{l} \mbox{Let } x,\,y,\,z\in X \mbox{ such that } x\,\,^*\,y=z \ . \\ \mbox{Then } (x\,\,^*\,y)\,^*\,z=0 \\ & & & & \\ & & \geq \min \left\{ \,\mu_A(x\,\,^*\,y),\,\mu_A(y) \,\right\} \\ & & & \geq \min \left\{ \min \left\{ \mu_A((x\,\,^*\,y)^*z),\,\mu_A(z) \,\right\},\,\mu_A(y) \,\right\} \\ & & & = \min \left\{ \min \left\{ \,\mu_A(0),\,\mu_A(z) \,\right\},\,\mu_A(y) \,\right\} \\ & & & = \min \left\{ \,\mu_A(y) \,\right\},\,\mu_A(z) \,\right\} \\ & & & \\ v_A(x)\leq \max \left\{ \,v_A(x\,\,^*\,y),\,v_A(y) \,\right\} \\ & & & = \max \left\{ \,\max \left\{ \,(v_A(x\,\,^*\,y)\,^*\,z\,\,),\,v_A(z) \,\right\},\,v_A(y) \,\right\} \\ & & & = \max \left\{ \,\max \left\{ \,v_A(0),\,v_A(z) \,\right\},\,v_A(y) \,\right\} \\ & & & = \max \left\{ \,v_A(y),\,v_A(z) \,\right\} \end{array}$

Theorem 3.4: Let $A = (\mu_A, \nu_A)$ be an intuitionistic multifuzzy ideal of a BG-algebra X. If $x \le y$ then $\mu_A(x) \ge \mu_A(y)$, $\nu_A(x) \le \nu_A(y)$ for all $x, y \in X$.

Proof:

Let x, y
$$\in$$
 X such that x \leq y. Then x * y = 0
 $\mu_A(x) \geq \min \{ \mu_A(x * y), \mu_A(y) \}$
 $\geq \min \{ \mu_A(0), \mu_A(y) \}$
 $= \mu_A(y)$
And $\nu_A(x) \leq \max \{ \nu_A(x * y), \nu_A(y) \}$
 $\leq \max \{ \nu_A(0), \nu_A(y) \}$
 $= \nu_A(y)$

Theorem 3.5: Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two intuitionistic multi-fuzzy ideals of a BG-algebra X. Then the intersection $A \cap B$ is also an intuitionistic multi-fuzzy ideal of X.

Proof:

Let $x, y \in A \cap B$

$$\begin{split} \mu_{A \cap B}(0) &= \mu_{A \cap B}(x * x) \\ &= \min \left\{ \mu_A(x * x), \mu_B(x * x) \right\} \\ &\geq \min \left\{ \min \left\{ \mu_A(x), \mu_A(x) \right\}, \min \left\{ \mu_B(x), \mu_B(x) \right\} \right\} \\ &= \min \left\{ \mu_A(x), \mu_B(x) \right\} \\ &= \max \left\{ \mu_A(x), \mu_B(x) \right\} \\ &= \mu_{A \cap B}(x) \\ \nu_{A \cap B}(0) &= \nu_{A \cap B}(x * x) \\ &= \max \left\{ \nu_A(x * x), \nu_B(x * x) \right\} \\ &\leq \max \left\{ \max \left\{ \nu_A(x), \nu_A(x) \right\}, \max \left\{ \nu_B(x), \nu_B(x) \right\} \right\} \\ &= \max \left\{ \nu_A(x), \nu_B(x) \right\} \\ &= \max \left\{ \nu_A(x), \nu_B(x) \right\} \\ &= \min \left\{ \min \left\{ \mu_A(x * y), \mu_A(y) \right\}, \min \left\{ \mu_B(x * y), \mu_B(y) \right\} \right\} \\ &\geq \min \left\{ \min \left\{ \mu_A(x * y), \mu_B(x * y) \right\}, \min \left\{ \mu_A(y), \mu_B(y) \right\} \right\} \\ &= \min \left\{ \mu_{A \cap B}(x * y), \mu_{A \cap B}(y) \right\} \\ &= \max \left\{ \max \left\{ \nu_A(x * y), \nu_A(y) \right\}, \max \left\{ \nu_B(x * y), \nu_B(y) \right\} \right\} \\ &= \max \left\{ \max \left\{ \nu_A(x * y), \nu_B(x / x y) \right\}, \max \left\{ \nu_A(y), \nu_B(y) \right\} \right\} \\ &= \max \left\{ \max \left\{ \nu_A(x * y), \nu_B(x / x y) \right\}, \max \left\{ \nu_A(y), \nu_B(y) \right\} \right\} \\ &\leq \max \left\{ \nu_{A \cap B}(x * y), \nu_{A \cap B}(y) \right\} \end{aligned}$$

Theorem 3.6: Let X be a BG-algebra. Then an intuitionistic multi-fuzzy set A is an intuitionistic multi-fuzzy ideal of X if and only if A is an intuitionistic multi-fuzzy subalgebra of X.

Proof: Every intuitionistic multi-fuzzy ideal of X is an intuitionistic multi-fuzzy subalgebra of X.

Conversely, let A be an intuitionistic multi-fuzzy subalgebra of X.

$$\begin{split} & \text{Let } x, y \in X \\ & \mu_A(0) = \mu_A(x * x) \\ & \geq \min \left\{ \begin{array}{l} \mu_A(x), \mu_A(x) \end{array} \right\} = \mu_A(x) \\ & \nu_A(0) = \nu_A(x * x) \\ & \leq \max \left\{ \begin{array}{l} \nu_A(x), \nu_A(x) \end{array} \right\} \\ & = \nu_A(x) \\ & \mu_A(x) = \mu_A((x * y) * (0 * y)) \\ & \geq \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & \geq \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \mu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(y) \end{array} \right\} \\ & = \min \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & \leq \max \left\{ \begin{array}{l} \nu_A(x * y), \nu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(0 * y) \end{array} \right\} \\ & = \max \left\{ \begin{array}{l} \nu_A(x * y), \mu_A(y) \end{array} \right\} \\ \end{array}$$

Definition 3.7: An intuitionistic multi-fuzzy subset A = $\{ (x, \mu_A(x), \nu_A(x)): x \in X \}$ in X is called an intuitionistic multi-fuzzy closed ideal of X if it satisfies:

- $\mu_A(0^* x) \ge \mu_A(x) \text{ and } \nu_A(0^* x) \le \nu_A(x)$
- $\mu_A(x) \ge \min \{ \mu_A(x * y), \mu_A(y) \}$
- $v_A(x) \le \max \{ v_A(x * y), v_A(y) \} \forall x, y \in X$

Example 3.8: Consider a BG-algebra $X = \{0, 1, 2, 3\}$ with the following table:

Table 3.2				
*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Let $A = (\mu_A, \nu_A)$ be an intuitionistic multi-fuzzy subset in X defined as follows:

 $\mu_A(0) = \mu_A(1) = (0.8, 0.5), \ \mu_A(2) = \mu_A(3) = (0.4, 0.3)$ and $\nu_A(0) = \nu_A(1) = (0.2, 0.3), \ \nu_A(2) = \nu_A(3) = (0.5, 0.4)$

Then A is an intuitionistic multi-fuzzy closed ideal of X.

Theorem 3.9: Every intuitionistic multi-fuzzy closed ideal of a BG-algebra X is an intuitionistic multi-fuzzy ideal of X.

Proof:

Let $A = (\mu_A, \nu_A)$ be an intuitionistic multi-fuzzy closed ideal of X.

It is enough to prove that $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$ Now, $\mu_A(0) \ge \min \{ \mu_A(0^*x), \mu_A(x) \}$

$$\geq \min \{ \mu_A(x), \mu_A(x) \} = \mu_A(x)$$

$$\leq \max \{ \nu_A(0^*x), \nu_A(x) \}$$

$$\leq \max \{ \nu_A(x), \nu_A(x) \}$$

$$= \nu_A(x)$$

Remark: The converse of the above thorem is not true. Let us prove this by the following example.

Example 3.10: Let Consider a BG-algebra X= { 0, 1, 2, 3 } with the following table:

Table 3.3					
*	0	1	2	3	
0	0	3	2	1	
1	1	0	3	2	
2	2	1	0	3	
3	3	2	1	0	

Let $A = (\mu_A, \nu_A)$ be an intuitionitic multi-fuzzy subset in X defined as follows:

 $\mu_A(0) = (0.8, 0.6), \, \mu_A(1) = (0.6, 0.4),$

 $\mu_A (2) = \mu_A(3) = (0.5, 0.3)$ and $\nu_A(0) = (0.1, 0.2), \nu_A(1) = (0.2, 0.4),$ $\nu_A(2) = \nu_A(3) = (0.4, 0.6)$

Then A is an intuitionistic multi-fuzzy ideal of X but it is not an intuitionistic multi-fuzzy closed ideal of X.

Corollary 3.11: Every intuitionistic multi-fuzzy subalgebra satisfying the conditions $\mu_A(x) \ge \min \{ \mu_A(x * y), \mu_A(y) \}, \nu_A(x) \le \max \{ \nu_A(x * y), \nu_A(y) \}$, is an intuitionistic multi-fuzzy closed ideal.

Theorem 3.12: Every intuitionistic multi-fuzzy closed ideal of a BG-algebra X is an intuitionistic multi-fuzzy subalgebra of X.

Proof:

Let $A = (\mu_A, \nu_A)$ be an intuitionistic multi-fuzzy closed ideal of X.

Then $\mu_A(x^*y) \ge \min \{ \mu_A((x^*y)^*(0^*y), \mu_A(0^*y) \}$ = min { $\mu_A(x), \mu_A(0^*y) \}$ $\ge \min \{ \mu_A(x), \mu_A(y) \}$ $\nu_A(x^*y) \le \max \{ \nu_A ((x^*y)^*(0^*y)), \nu_A (0^*y) \}$ = max { $\nu_A (x), \nu_A (0^*y) \}$ $\le \max \{ \nu_A (x), \nu_A (y) \}$

 $\begin{array}{l} \textbf{Preoposition 3.13:} \ If an intuitionistic multi-fuzzy set A = \\ (\mu_A, \nu_A) \ in \ X \ is an intuitionistic multi-fuzzy closed ideal, \\ then \ for \ all \ x \in X, \ \mu_A(0) \geq \mu_A(x) \ and \ \nu_A(0) \leq \nu_A(x) \end{array}$

Proof: Straight forward.

Definition 3.14: Let $A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \}$ be an intuitionistic multi-fuzzy subset in X. Then the (α, β) -cut of A is denoted by $[A]_{(\alpha,\beta)}$ and is defined by $[A]_{(\alpha,\beta)} = \{ x \in X : \mu_A(x) \ge \alpha \text{ and } \nu_A(x) \le \beta \}$ where $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ and $\beta = (\beta_1, \beta_2, ..., \beta_k)$ where each $\alpha_i, \beta_i \in [0, 1]$ with $0 \le \alpha_i + \beta_i \le 1$ for all i = 1, 2, ..., k such that $\mu_i(x) \ge \alpha_i$ with the corresponding $\nu_i(x) \le \beta_i$ for all i = 1, 2, ..., k.

Theorem 3.15: If A is an intuitionistic multi-fuzzy ideal of X, then the subset $[A]_{(\alpha,\beta)}$ is an BG-ideal in X.

Proof:

 Since A = (μ_A, ν_A) is an intuitionistic multi-fuzzy ideal in X, μ_A(0) ≥ μ_A(x) ≥ α

and $\nu_{\scriptscriptstyle A}(0) \leq \nu_{\scriptscriptstyle A}(x) \leq \beta$. Then $0 \in [A]_{\scriptscriptstyle (\alpha,\,\beta)}$

• Let $x * y \in [A]_{(\alpha, \beta)}$ and $y \in [A]_{(\alpha, \beta)}$

Then $\mu_A(x * y) \ge \alpha$, $\nu_A(x * y) \le \beta$ and $\mu_A(y), \ge \alpha, \nu_A(y) \le \beta$ $\mu_A(x) \ge \min \{ \mu_A(x * y), \mu_A(y) \}$ $\ge \min \{ \alpha, \alpha \} = \alpha$ and $\nu_A(x) \le \max \{ \nu_A(x * y), \nu_A(y) \}$ $\le \min \{ \beta, \beta \} = \beta$ This implies that $x \in [A]_{(\alpha, \beta)}$

• Let $x \in [A]_{(\alpha,\beta)}$ and $y \in X$

 $\begin{array}{l} Choose \ y \ in \ X \ such \ that \ \mu_{A}(y) \geq \alpha, \ \nu_{A}(y) \leq \beta \\ \mu_{A}(x^{*}y) \geq \min \ \{ \ \mu_{A}(x), \ \mu_{A}(y) \ \} \\ \geq \min \ \{ \ \alpha, \ \alpha \ \} = \alpha \\ and \ \nu_{A}(x^{*}y) \leq \max \ \{ \ \nu_{A}(x), \ \nu_{A}(y) \ \} \\ \geq \max \ \{ \ \beta, \ \beta \ \} = \beta \\ This \ implies \ that \ x^{*}y \in [A]_{(\alpha, \ \beta)} \\ Hence \ the \ subset \ [A]_{(\alpha, \ \beta)} \ is \ a \ BG-ideal \ in \ X. \end{array}$

Theorem 3.16: Let X be a BG-algebra . If the set $[A]_{(\alpha,\beta)}$ is a BG-ideal in X then an intuitionistic multi-fuzzy set A = (μ_A, ν_A) is an intuitionistic multi-fuzzy ideal in X.

Proof: Let $[A]_{(\alpha,\beta)}$ be a BG-ideal in X.

Assume that $A = (\mu_A, \nu_A)$ is not an intuitionistic multi-fuzzy ideal in X.

Then there exists a, $b \in X$ such that $\mu_A(a) < \min \{ \mu_A(a^*b), \mu_A(b) \}$ and $\nu_A(a) > \max \{ \nu_A(a^*b), \nu_A(b) \}$ hold. Let $\alpha = [\mu_A(a) + \min \{ \mu_A(a^*b), \mu_A(b) \}] / 2$, $\beta = [\nu_A(a) + \max \{ \nu_A(a^*b), \nu_A(b) \}] / 2$ Then $\mu_A(a) < \alpha < \min \{ \mu_A(a^*b), \mu_A(b) \}$ and

 $v_A(a) > \beta > \max\{v_A(a*b), v_A(b)\}$

This implies that a^*b , $b \in [A]_{(\alpha, \beta)}$ but $\mu_A(a) \le \alpha$ and $\nu_A(a) \ge \beta$

That is, $a \notin [A]_{(\alpha,\beta)}$ which is a contradiction that $A]_{(\alpha,\beta)}$ is a BG-ideal of X.

Therefore $\mu_A(x) \ge \min \{ \mu_A(x * y), \mu_A(y) \}$ and $\nu_A(x) \le \max \{ \nu_A(x * y), \nu_A(y) \}$ Hence $A = (\mu_A, \nu_A)$ is an intuitionistic multi-fuzzy ideal in X.

Properties of Intuitionistic Multi-fuzzy Ideals under Homomorphism: In this section, we study the properties of intuitionistic multi-fuzzy ideals under homomorphism.

Theorem 4.1: Let f: $X \rightarrow Y$ is a BG-homomorphism of BGalgebras. If $B = (\mu_B, \nu_B)$ is an intuitionistic multi-fuzzy ideal of Y then the pre-image $f^{-1}(B) = (f^1(\mu_B), f^{-1}(\nu_B))$ of B under f is an intuitionistic multi-fuzzy ideal in X.

Proof:

 $\begin{array}{l} For \mbox{ any } x \in X, \\ i) \ f^{1}(\mu_{B})(x) = \mu_{B}(f(x)) \leq \mu_{B}(0) = \mu_{B}(f(0)) = f^{1}(\mu_{B}) \ (0) \\ And \ f^{1}(\nu_{B})(x) = \nu_{B}(f(x)) \geq \nu_{B}(0) = \nu_{B}(f(0)) = f^{1}(\nu_{B}) \ (0) \\ ii) \ f^{1}(\mu_{B})(x) = \mu_{B}(f(x)) \\ & \geq \min \left\{ \ \mu_{B}(\ f(x) * f(y) \), \ \mu_{B}(f(y)) \right\} \\ & = \min \left\{ \ \mu_{B}(f(x^{*}y)), \ \mu_{B}(f(y)) \right\} \\ & = \min \left\{ \ f^{1}(\mu_{B})(x^{*}y), \ f^{1}(\mu_{B})(y) \right\} \\ f^{1}(\nu_{B})(x) = \nu_{B}(f(x)) \\ & \leq \max \left\{ \ \nu_{B}(\ f(x) * f(y) \), \ \nu_{B}(f(y)) \right\} \\ & = \max \left\{ \ \nu_{B}(\ f(x^{*}y)), \ \nu_{B}(\ f(y)) \right\} \\ & = \max \left\{ \ f^{1}(\nu_{B})(x^{*}y), \ f^{1}(\nu_{B})(y) \right\} \end{array}$

Theorem 4.2: Let f: $X \rightarrow Y$ be an epimorphism of BGalgebra. Then $B = (\mu_B, \nu_B)$ is an intuitionistic multi-fuzzy ideal of Y, if $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B))$ of B under f is an intuitionistic multi-fuzzy ideal in X.

Proof:

For any $x \in Y$, there exists $a \in X$ such that f(a) = x. Then $\mu_{B}(x) = \mu_{B}(f(a)) = f^{-1}(\mu_{B})(a) \le f^{-1}(\mu_{B})(0) = \mu_{B}(f(0)) = \mu_{B}(0) \nu_{B}(x)$ $= v_{B}(f(a)) = f^{-1}(v_{B})(a) \le f^{-1}(v_{B})(0) = v_{B}(f(0)) = v_{B}(0)$. ii) Let $x, y \in Y$ Then f(a) = x and f(b) = y for some $a, b \in X$ $\mu_{\rm B}(x)$ $= \mu_{\rm B}(f(a))$ $= f^{1}(\mu_{B})(a)$ $\geq \min \{ f^{1}(\mu_{B}(a^{*}b)), f^{1}(\mu_{B}(b)) \}$ $= \min \{ \mu_{B}(f(a*b)), \mu_{B}(f(b)) \}$ = min { $\mu_{B}(f(a)*f(b)), \mu_{B}(f(b))$ } $= \min \{ \mu_{B}(x^{*}y), \mu_{B}(y) \}$ $v_{\rm B}(x)$ $= v_{\rm B}(f(a))$ $= f^{-1}(v_{\rm B})(a)$ $\leq \max \{ f^{-1}(v_{B}(a^{*}b)), f^{-1}(v_{B}(b)) \}$ $= \max \{ v_{B}(f(a*b)), v_{B}(f(b)) \}$ = max { $v_{B}(f(a)*f(b)), v_{B}(f(b))$ } $= \max \{ v_B(x^*y), v_B(y) \}$

Hence the intuitionistic multi-fuzzy set $B = (\mu_B, \nu_B)$ is an intuitionistic multi-fuzzy ideal of Y.

REFERENCES

- 1. Zadeh, L.A., 1965. Fuzzy Sets, Information and Control, 8: 338-353.
- Atanassov, K.T, 1986. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1): 87-96.
- Sabu, S. and T.V. Ramakrishnan, 2010. Multi-fuzzy sets, International Mathematical Forum, 50: 2471-2476.

- Sabu, S. and T.V. Ramakrishnan, 2011. Multi-fuzzy Topology, International Journal of Applied Mathematics, 24(1): 117-129.
- Imai, Y. and K. Iseki, 1966. On axiom system of propositional calculi, 15 Proc, Japan Academy, 42: 19-22.
- 6. Iseki, K. and S. Tanaka, 1978. An introduction to theory of BCK- algebras, Math. Japonica, 23: 1-26.
- Iseki, K., 1980. On BCI-algebras, Math. Seminor Notes, 8:125-130.
- Neggers, J. and H.S. Kim, 2002. On B-algebras, Mat. Vesnik, 54: 21-29.
- 9. Kim, C.B. and H.S. Kim, 2008. On BG-algebras, Demonstratio Mathematica, 41: 497-505.

- Ahn, S.S. and D. Lee, 2004. Fuzzy subalgebras of BG algebras, Commun. Korean Math. Soc, 19(2): 243-251.
- Dr .R. Muthuraj and S. Devi, 2016. Multi-Fuzzy Subalgebras of BG-Algebra and Its Level Subalgebras, International Journal of Applied Mathematical Sciences, 9(1) 113-120.
- R.Muthuraj and S.Devi, Intuitionistic Multi-fuzzy BGsubalgebra, KR Journal, 1(1): 30-34.
- Shinoj, T.K. and J.J. Sunil, 2013. Intuitionistic Fuzzy Multisets, International Journal of Engineering Science and Innovative Technology, 2(6): 1-24.