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Abstract: This paper delineates an experimental framework to confirm the distinctiveness of artificial bee colony
(ABC) algorithm for hydrothermal scheduling (HTS) problems. The experimental framework can be involved in
two main phases: one is the optimal generation allocation of hydrothermal power system using an ABC
algorithm in proportion to the compromised fuel cost (FC) and emission release (ER). In which the HTS problem
is formulated as a bi-objective framework with an intricate equality and inequality constraints. A linear
interpolated price penalty factor approach is exercised for blending two objectives concurrently. Meanwhile,
solution repair strategy is incorporated in the algorithm that handles the control variable in turn to satisfy water
dynamic and system equality constraints. The applicability of the ABC algorithm is demonstrated on cascaded
hydrothermal system. Second is the standard statistical test carry out using SPSS software for comparing the
results that were obtained by the proposed and other techniques have considered in the literature. The
experimental results confirm that the ABC algorithm shows significant distinctive than other techniques while
performing energy, economic and environmental impact assessment on the hydrothermal power system.

Key words: Hydrothermal Scheduling  Economic/Emission  Artificial Bee Colony Algorithm  One-Way
ANOVA  Nonparametric Test

INTRODUCTION and storage. Therefore, finding optimal generation

Hydrothermal scheduling is an optimization problem significant challenge to the scheduler [1].
that derives an operating strategy for minimizing not only Many metaheuristic algorithms have been evolved
fuel cost of thermal power generation but also secures the for solving HTS problem from the past decade in which
phenomenal exhausting of fossil fuel resources through differential evolution (DE) [2] multi-objective differential
the optimum utilization of the available hydro resource; evolution (MO-DE) [3] particle swarm optimization (PSO)
these are the major sources of atmospheric pollution. [4] are widely employed to attain optimal generation
Therefore, the amalgamated optimal dispatch of scheduling intent of obtaining minimum emission release
hydrothermal generating units is to be considered a great and energy efficient operation subjected to operational
importance in power system operation. It has devised as and physical constraints of thermal and hydro plants.
short-term scheduling problem subjected to operational While strictly satisfying all constraints of the test system,
constraints of both thermal and hydro units are fully evolutionary computation approaches often converge to
satisfied. Usually, the power generation of each hydro sub-optimal solution prematurely. To ensure high-quality
plant is computed using optimal water discharge and solution near to global optima various heuristic
storage volume. In the cascaded reservoir configuration, techniques have combined themselves or with any
water inflow to the successive reservoir depends on its operator to develop hybrid optimization method. Some of
forerunner  reservoir  discharge rate and storage volume. them are an interactive fuzzy satisfying method based on
It builds a dynamic relation among water inflow, discharge evolutionary programming technique [5] self-organizing

schedule for hydrothermal system effectively is a
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hierarchical particle swarm optimization technique with by the respondents. The behavior of different
time-varying acceleration coefficients (SOHPSO_TVAC) evolutionary algorithms’ over optimizing a set of standard
[6] civilized swarm optimization (CSO) [7] simulated test function has been distinguished using parametric and
annealing based multi-objective cultural differential non-parametric statistical tests [18]. An advanced
evolution (SA-MOCDE) [8] improved gravitational search experiment has conducted in computational intelligence
algorithm (IGSA) [9] dynamically controlled particle swarm and data mining for multiple comparisons, respectively
optimization (DC-PSO) [10] hybrid chemical reaction [19, 20]. Followed, Derrac et al. [20] has exercised a
optimization (HCRO) [11] improved multi-objective practical tutorial on the use of the non-parametric
gravitational search algorithm (IMOGSA) [12] and statistical test for comparing evolutionary and swarm
surrogate differential evolution (SDE) [13]. intelligence algorithms [21]. The null hypothesis

As far as the state-of-the-art, literature the HTS has significance test has performed for the comparison and
devised either Bi or multi-objective combinatorial ranking of evolutionary algorithms [22] whilst the swarm
optimization  that  has non-convex objective function and intelligent behavior was analyzed in solving
solved using numerous metaheuristic optimizations. multiobjective optimization [23].
However, the reported optimization techniques had found In this paper, a strategy for bi-objective hydrothermal
an optimum solution; it is not an end global solution to optimization based upon the behavior of an artificial bee
HTS problem due to the common shortcomings of colony algorithm has presented where the linear
algorithm complexity, premature convergence (because of interpolated price penalty factor approach is incorporated.
imbalance between exploration and exploitation) and large The control parameter of ABC is tuned to ferret out the
computational time. To overcome this drawback, a new cost-effective/environmentally sustainable schedule for
emerging optimization tool, i.e., an artificial bee colony the cascaded hydrothermal system that consists four
(ABC) algorithm is preferred with the suitable control hydro and three thermal units. Descriptive, parametric and
parameter. Moreover, four distinctive selections process nonparametric tests are conducted wherein the solution
balance intensification and diversification. The superior that has obtained already by several algorithms in the
convergence characteristics and performance of the ABC same test system is used from the literature. With the aim
algorithm than other swarm intelligence techniques, while the paper is structured into six sections. The objective
solving a set of standard test functions have been function and constraints are briefed in section 2 whereas,
successfully analyzed [14, 15]. In order to serve electricity an overview and implementation of the proposed ABC
at the cheapest possible price with cleanliness, algorithm, including the constraint handling mechanism
environment a suitable optimum operation strategy was has been described in section 3. The statistical analysis is
developed in the author's earlier research work using an explained in the next section. Followed, the computation
ABC algorithm. In which the optimum utilization of fossil and experimental results obtained by the ABC algorithm
fuel minimize the fuel cost and emission release that is illustrated in section 5. At last, the inference is
protect the environmental damage [16]. summarized in section 6.

In recent decades, many evolutionary and swarm
intelligence algorithms have been employed to solve bi- Problem Formulation: The fuel cost and emission release
objective or multiobjective hydrothermal scheduling of the thermal unit have considered as objective functions
problem the simulation results show that they outperform of HTS problem. These are the function of real power
each other numerically. In this situation, the use of generation and have to be minimized concomitantly. The
standard statistical analysis improves the evaluation mathematical expression is: 
process of the performance of a new algorithm that has
become necessary to confirm whether a new proposed Minimize {F(P ), E(P ) (1)
method offers a significant improvement, or not, over the
existing methods for a given problem. The cost function of thermal units over a scheduling

Ahadzie et al. [17] has carried out one sample t-test period can be defined (2).
to analysis the data and the descriptive statistics provide
interesting findings such as minimum, maximum, mean,
standard deviation and standard error. Further, each
attribute was ranked according to its standard deviation
to help provide a clearer picture of the consensus reached (2)

si,k si,k
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The emission produced by the thermal units is a (11)
supplement to the usual cost function and can be defined
(3). (12)

 (lb) (3) optimization, bi-objective optimization problems deal with

Subjected to the subsequent operational and penalty factor approach. The price penalty factor is
physical constraints of hydro and thermal plants, in which defined as the ratio between the average full load fuel cost
some of them impose either equality or inequality and average emission of the corresponding generator as
relationship: its maximum output. 

The power balance constraint of HTS problem is
mathematically formulated (4). Computation of modified price penalty factor:

(4) Step 1: The computation of h :

where, (13)

(5)

(6) Step 3: Then the maximum limit of each unit was added

The initial and final storage volume of the reservoir is
modeled as equality constraint and given by (7). Step 4: In this procedure h  related to the last unit was

(7) conflict objectives.

Neglecting spillage the hydraulic continuity equation Computation of Normalized Price Penalty Factors: While
is modeled (8). performing step 3 sum of the maximum capacity of thermal

(8) value. In order to determine the non-inferior solution, an

The power generation at an each interval has met the Let, P  is the maximum capacity of a unit at that
following inequality constraints: moment by adding the same causes sum total exceeds the

(9) is h . The maximum capacity P  is the predecessor and

(10) price penalty factor can be determined using the (14).

Similarly, the water discharge and reservoir storage
volume at an interval have satisfied its lower and upper
limits and is represented in (11) and (12) respectively. (14)

Handling Bi-Objective: Unlike the single objective

two objective functions that are competing and
conflicting. Generally, it can be handled by using the price

max

Step 2: According to h  the thermal units were ranked inmax,

rising order.

one at a time starting from the lowest h untilmax

 have been discerned.

max

considered as a price penalty factor to trade-off two

units often greater than demand, it may lead approximate

accurate model is necessary which is not explored in the
literature. This drawback can be rectified by incorporating
a simple mathematical technique with the usual procedure.

g1

load demand P  and its corresponding price penalty factorD

1 go

the associated price penalty is h . Then the normalizedo



{ }, ,( ) * ( )si k k si kF P h E P+

[ ]( )min max min
, , , ,0,1k l k l k l k lx x rand x x= + −

( ), , , , , ;

; ;
k l k l k l k l m lv x x x

k m m SP l D

= + φ −

≠ ∈ ∈

1

k
k SP

m
m

fitp
fit

=

=

∑

( ) ( )

( )( ) ( )

1 0
1
1 0

k
kk

k k

if f x
f xfit
abs f x if f x

 ≥ += 
 + <

( )min max min
, *h jk hj hj hjQ Q rand Q Q= + −

( )min max min
, *s ik si si siP P rand P P= + −

Middle-East J. Sci. Res., 25 (2): 203-216, 2017

206

Now, the simultaneous objective function is modeled Step 6: Probability values p  for different solutions of x
by using h  and then the function to be minimized is are calculated by means of their fitness values using (18).k

defined as, In this fit represents the fitness values of solutions and

Minimize (15)

Application of ABC to Hts Problem
Overview:  It  is  a  bio-inspired  swarm intelligent
algorithm and developed by Karaboga in 2008 by
inspiring the intelligent foraging behavior of real honey (19)
bees. The colony of real honey bees consists of three
groups; employed bees, onlooker bees and scout bee.
The  fascinating  significances  of  the  honey bees are Step 7: Based on probabilities (p ), new solutions v  for
self-organization and division of labor. These are enough the onlooker is produced from x .
to get a solution in the search space. A waggle dance is
a mechanism of honey bees used to perform during food Step 8: REPEAT Step-5.
foraging task, through which information about all the
current rich sources is exchanged and allowed to decide Step 9: Next, the abandoned solution is determined if
the most profitable source. Based on these an artificial bee exists and it is replaced with a newly produced random
colony algorithm was mathematically modeled. Basically, solution x for the scout as explained in scout bee phase
ABC algorithm has been carried out; Initialization Phase, i.e., using (16).
Employed Bees Phase, Onlooker Bees Phase and Scout
Bees Phase with few control parameters. Step 10: Memorize the best food source obtained so far.

Pseudo-Code of ABC Algorithm: The four different Step 11: Cycle = cycle+1
selection processes that carry by the ABC algorithm in
the feasible search space are presented in the form of Step 12: UNTIL cycle = Maximum;
pseudo-code as follows:

Step 1: Initialize the population of solutions using (16).

(16) for HTS have been summarized in this section.

Step 2: Population is evaluated. control  variables,  one  is  hourly  water discharge of

Step 3: FOR cycle = 1; REPEAT denoting the current food set of the population to be

Step 4: New solutions (food source positions) v  in the operational limits based on (20) and (21).kl

neighborhood of x are produced for the employed beeskl

using (17) is the solution in the i  neighborhood, rand (k, (20)th

l) being a random number (-1 = rand = 1) and evaluate
them. (21)

(17) Unlike thermal generation, the hourly hydro

Step 5: Store the best values between x and v after the In order to handle above-mentioned constraints, akl kl

greedy selection process. solution repair mechanism is adopted in the algorithm.

k k

these are calculated using (19).

(18)

k k

k

i

Step 13: STOP

The implementation procedure of an ABC algorithm

Initialization of Control Variables: There are two sets of

hydro plant and another is the thermal generation

evolved. These are randomly engendered within the

discharge should be satisfied hydraulic dynamic
constraints, initial and final reservoir volume constraints.
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Therefore, a  dependent interval “d” was chosen Likewise, the fitness value of all individuals of the
randomly and discharge at that interval was calculated by updated food set matrix is calculated using (26), the best
re-arranging (8) and given by (22), until (11) is satisfied one is identified and stored in a memory location for the
otherwise hydrogenation was computed using (6) with the next phase. Then the same procedure is repeated for next
available storage volume of water and satisfied water phase and followed fitness evaluation is performed to
discharge. identify the best solution.

Fitness evaluation of the new food source position:

(22) Modification of Thermal Generation Schedule: Since the

Then, the set of trial a vector is structured as an array discharge and satisfied storage volume the modification
to fix the position of the initial solution [SP x T* (N +N )] of hydropower can affect the previous water discharge.h s

and are deployed for entire schedule horizon to obtain an Hence, all hydro and first N -1 thermal generations are
optimum generation schedule. retained at the optimum value and one thermal generation

on solution repair strategy. Therefore, by substituting (5)
(23) in (4) a quadratic equation as the function of P  is derived

Fitness evaluation of augmented objective function: satisfies the constraint (3) perfectly.
An augmented objective function (AOF) is derived using
(24), which is the sum of the objective function
considered and absolute value in violation of power
balance constraint with a high valued scalar multiplier.
This technique converts the primal constrained problem
into an unconstrained problem.

(24) (27)

The fitness value of all individuals of the current food Inequality Constraints Handling Mechanism: The
set matrix (x ) is calculated using (25), the best one is decision variables of hydro plant discharge and thermalo

identified and stored in a memory location for the next plant output power are kept in the valid range by handling
phase. appropriately. If any newly engendered decision variable

(25) can be handled as follows: 

Updating food position for an optimal solution: The
new position of each food source, if Q  and P  violatehj, k si, k

their allowable ranges and they are limited to their
respective ranges.

(26) (29)

For the new position of each control variable, the AOF is
calculated. Then, the best food source is memorized and
unimproved food sources are abandoned using (21).

hydro generation is computed from optimum water

s

is modified to satisfy the power balance equation based

gd

and it can be solved for the slack thermal unit that

falls either behind the lower or beyond the upper limits it

(28)
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Evaluation of the Stopping Condition: If iter < maxCycle, normally distributed, the samples must be sovereign and
update food position. Otherwise, the ABC algorithm the variances of the populations must be equal. Then the
terminates. null hypothesis will be that all population means are

Statistical Measures: Commonly two classes of tests are means is different. The one-way ANOVA statistical model
emphasized in statistical analysis to test the significant summary provides the subsequent prediction [23].
importance or the difference between two measured The ANOVA partitions the total variation of the data,
phenomena in addition to descriptive statistics. These are i.e., sums of squares (SS ) into two sources:
parametric tests and nonparametric tests, depending on
the concrete type of data employed. In the parametric The variation that exists within each group, called the
analysis, a common statistical technique repeated within groups sum of squares (SS ).
measures ANOVA is performed for testing the difference The variation that exists between the groups, called
between more than two related sample means [18]. the between-groups sum of squares (SS ).
Whereas in nonparametric analysis pairwise statistical
procedures perform individual comparisons between the Each SS is used to form an independent estimate of
two algorithms, obtaining in each application a p-value the H  population variance. The estimate based on the
independent from another one. Pairwise comparisons are within-group variability is called the within-group
the simplest kind of statistical tests that compare the variance estimate, i.e., Mean square within (MS ). The
performance of two algorithms when applied to a common estimate based on the between-group variability is called
set of problems. In order to do the same a quick and easy the between-group variance estimate, i.e., Mean square
procedure,  Wilcoxon  signed  rank  test   is  performed between (MS ). Finally, an F ratio is calculated.
[19, 20].

Descriptive Statistics: Descriptive statistic is a procedure (31)
used to summarize numeric observation, organize and
make sense of the population considered a specific
attribute to be important or otherwise. Typically, where,
descriptive statistics are presented in a tabular form that x - Data value
includes minimum, maximum and means for each attribute N - Total sample mean
including the associated standard deviation and standard - Grand mean
error [17]. In which, the standard deviation is the most (k – 1) - Degree of freedom (df) of SS
frequently used indices of variability and includes every (N – k) - Degree of freedom (df) of SS
score in its calculation. Its formulation is categorized into
evaluating from a population.

(30)

where x  is the value of the i  item µ is the population involving a plan with two samples. This is analogous toi
th

arithmetic mean and N is the population size. the paired t-test in nonparametric statistical procedures;

One-Way ANOVA: The ANOVA is a statistical technique deviations between two sample means, i.e., the behavior
which compares different sources of variation within a of two algorithms. The procedure of Wilcoxon’s test is
data set. The purpose of the comparison is to determine reported as follows [20].
if substantial differences exist between two or more
groups. While doing one-way ANOVA, the following Step 1: The difference between the performance scores of
were assumed that the populations from which the the two algorithms on i out of n problems is determined
samples were received must be normally or approximately and let it be d .

equal, the alternative hypothesis is that at least one

T

W

B

0

W

B

W

W

Wilcoxon Signed Rank Test: It is a nonparametric
procedure employed in hypothesis testing situations,

thus, it is a pairwise test that purports to find important

th

i
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Step 2: The differences are ranked according to their Optimal Solution: The perspective of combined economic
absolute values; in the case of ties, ignore ties, assign the and emission scheduling (CEES) of hydrothermal power
highest rank, compute all the possible assignments and system addresses energy efficient utilization and
average the results obtained in every application of the environmental issues. Hence, it has in mind to minimize
test and so on, although the use of average ranks for conflicting FC and ER. To do the same a linear
dealing with ties also recommended. interpolated price penalty factor approach is slotted in

Step 3: Let R  be the sum of the ranks of the problems in objectives and the corresponding normalized price+

which the first algorithm outperformed the second and R penalty factor for a certain load demand and have been-

the sum of the ranks for the opposite. Ranks of d = 0 are listed in Table 1. Thus, a trade-off has been obtainedi

split evenly among the sums; if there are an odd number between FC and ER at $ 42109.8738 and 9402.3019 (lb)
of them, one is ignored: respectively. Followed, the optimum water utilized for

scheduling and thermal generation scheduling have been

(32) Figure 3, it is viewed that the water storage volume during

Step 4: Let T be the smaller of the sums, T = min (R , R ). interval. Moreover, the water transportation trajectory of+ -

If T is less than or equal to the value of the distribution of reservoirs has begun its initial volume and terminated at
the Wilcoxon for n degrees of freedom, the null exact final value, which substantiates the constraint
hypothesis of equality of means is rejected; this will mean handling mechanism and ABC’s search ability.
that a given algorithm outperforms the other one, with the
p-value associated. Given its widespread use, the
computation of the p-value for this test is usually
included in well-known statistical software packages
SPSS.

RESULTS AND DISCUSSION

The applicability of the ABC algorithm is examined
on the cascaded hydrothermal system that has four hydro
and three thermal units [5]. The operating cost and
emission characteristic of the thermal unit are modeled as
quadratic non-convex function. Additionally, line loss
also considered that increases the intricacy of the problem
and the Bmn coefficients are referred from [3]. The total
scheduling is carried for 24 hours with an hour interval.

The ABC algorithm is coded in MATLAB 7.9
platform and is simulated on an Intel (R) Core (TM) i5-
4140C  CPU,  1.70GHz,  4-GB  RAM  personal computer.
To substantiate the potency of ABC algorithm, HTS
problem is simulated for minimizing FC and ER
simultaneously. The obtained values of the test system is
compared statistically with the previous methods of DE
[2] MODE [3] PSO [4] SOHPSO_TVAC[6] SA-MOCDE [8]
IGSA [9] DCPSO [10] HCRO [11] IMOGSA [12] and SDE
[12] to validate the solution quality.

with an ABC algorithm to obtain a trade-off between these

minimum FC and ER is presented in Table 2.
Consequently, hourly optimal hydro plant generation

shown in Figures 1 and 2 respectively. Further, from the

the scheduling period is satisfied with its limits at each

Table 1: Price penalty factor for particular load demand

Hr PD (MW) Price penalty factor

1 750 1.4850

2 780 1.7443

3 700 1.3760

4 650 1.0699

5 670 1.1484

6 800 1.7845

7 950 1.9673

8 1010 2.5961

9 1090 2.9555

10 1080 2.9158

11 1100 2.6127

12 1150 2.4092

13 1110 2.1786

14 1030 2.5956

15 1010 2.1736

16 1060 2.4625

17 1050 2.8194

18 1120 2.8144

19 1070 2.9812

20 1050 2.6992

21 910 1.9126

22 860 1.7957

23 850 1.6881

24 800 1.5400
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Fig. 1: Hourly optimal hydro plant generation obtained by ABC for CEES

Table 2: Hourly Optimal water discharge obtained by ABC for CEES
Water Discharge 10 m4 3

Hr Q Q Q Q Hr Q Q Q Qh1 h2 h3 h4 h1 h2 h3 h4

1 8.5356 7.5667 27.8900 6.0000 13 6.7306 6.8285 10.4628 16.8206
2 7.6805 8.1147 19.3668 6.0000 14 11.3490 10.0775 12.3911 7.2588
3 8.0546 7.2890 10.2750 6.0000 15 5.4198 10.3624 13.1604 17.2273
4 6.2049 8.4798 13.8532 15.0654 16 5.7255 12.5935 17.4105 19.7638
5 7.1383 9.3982 14.2220 17.8307 17 6.7039 10.5788 15.6652 14.7749
6 5.2980 6.4679 14.0777 16.4710 18 7.4962 6.1530 14.6788 16.3473
7 10.2929 6.5933 16.0636 7.9346 19 10.2468 9.3473 19.4599 19.4101
8 9.2217 6.2664 17.0897 18.9597 20 6.6561 7.3969 15.2337 15.5027
9 5.3380 7.0400 14.6781 16.9644 21 8.8492 11.6157 28.1759 11.5218
10 5.4986 8.2008 16.7832 11.2568 22 6.3709 8.0318 14.0211 13.6095
11 6.3897 8.5479 20.7315 19.3512 23 11.8958 9.1135 12.8050 17.3681
12 5.0302 11.2354 12.9111 11.6199 24 8.9620 6.0161 20.6426 18.9328

Fig. 2: Hourly optimal thermal plant generation obtained by ABC for CEES
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Fig. 3: Hourly hydro plant water storage trajectories obtained by ABC for CEES

Table 3: Comparison of optimal FC and ER concerning ABC with other
methods

Methods FC ($) ER (lb)
DE 44913.51 19614.88
MODE 49677.15 22615.31
PSO 43334.38 18117.09
SOHPSO_TVAC 43045.33 17002.94
SA-MOCDE 43165.12 17464.35
IGSA 43299.75 17868.69
DCPSO 42118.58 16526.95
HCRO 42801.64 17623.01
IMOGSA 44492.37 17354.44
SDE 41697.23 17981.40
ABC 42809.87 16402.37

Competency with Other Method: Broadly, the strength of
the ABC technique is examined in term of solution quality
against other rivals. So, the best result was attained in
CEES case have been compared in Table 3, As seen from
the comparison, reported algorithms have tried to minimize
FC in the desired values and pollutant ER into a tolerable
value. Nevertheless, the ABC outperforms other
contestant algorithm listed in the literature in the
viewpoint of pollutant emission reduction and it is able to
schedule the hydrothermal system with compromised
minimum FC and agreeable ER in CEES case. Similarly, the
proficiency of the ABC approach is compared pictorially
in Figure 4, in which thirty compromised non-inferior
solutions obtained by ABC, SA_MOCDE [8] IGAS [9] and
IMOGSA [12] were diffused in the operational place. It is
distinctly understood that the non-inferior solution

obtained by ABC has a good variety, distribution and
dominate those obtained by other three methods.
Moreover, it brings out that ABC is better to optimize
both objectives and efficient in solving short-term HTS
problem.

Further, to confirm the capability of ABC on HTS,
amount of savings in FC and reduction in ER have
obtained against cited literatures was differentiated in
Table 4, where the FC saved by ABC is $1403.64, $6867,
$517.51, $165.46, $285.18, $489.88 and $982.5 while
pollutant emission is 2442.51 (lb), 6142.94 (lb), 107.72 (lb),
600.57 (lb), 766.25 (lb) and 952.07 than DE [2] MODE [3]
PSO [4] SOHPSO_TVAC [6] SA-MOCDE [8] IGSA [9] and
IMOGSA [10] respectively. It is noticed that there are no
significant savings in FC as compared with DCPSO [10]
HCRO [11] and SDE [13] but there is praiseworthy
pollutant emission reduction 117.58 (lb), 1143.64 (lb) and
879.03 (lb) respectively. If these three methods have tried
to reduce the pollutant emission further the
corresponding FC will be certainly greater than what the
ABC algorithm has obtained.

Descriptive Statistics: The main intent of the descriptive
statistic test is to compare the performance of the ABC
algorithm with listed optimization algorithms for solving
CEES  problem. Therefore  a  descriptive statistical test
was carried out using SPSS software with an optimized
value  of  compromised  FC and pollutant emission over
the  schedule  horizon  and  the  experimental  results were
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Fig. 4: The distribution of the non-inferior solutions of ABC and solutions of other methods

Table 4: Savings in FC and reduction in ER concerning ABC with respect to other methods

Methods FC ($) ER (lb)

DE 2103.64 3212.51
MODE 6867.28 6212.94
PSO 524.51 1714.72
SOHPSO_TVAC 235.46 600.57
SA-MOCDE 355.25 1061.98
IGSA 489.88 1466.32
DCPSO --- 124.58
HCRO --- 1220.64
IMOGSA 1682.5 952.07
SDE --- 1579.03

Table 5: Descriptive statistics for compromised FC over schedule horizon

Fuel Cost in $
-----------------------------------------------------------------------------------------------------------------------------------------------

Methods Minimum Maximum Mean Std. Deviation Std Error Rank

DE 1241.22 2468.56 1871.40 409.70 83.63 10
MODE 1296.82 2672.54 2069.88 393.23 80.27 8
PSO 871.34 2536.50 1805.60 432.66 88.32 11
SOHPSO_TVAC 1073.03 2351.36 1793.56 393.53 80.33 9
SA-MOCDE 1267.67 2335.05 1798.55 287.01 58.59 2
IGSA 1311.05 2102.25 1804.16 288.86 58.96 3
DCPSO 1120.79 2382.18 1754.94 345.41 70.51 6
HCRO 1238.23 2300.44 1783.40 348.03 71.04 7
IMOGSA 1290.50 2277.01 1853.86 315.40 64.38 4
SDE 1262.42 2232.61 1737.42 331.68 67.70 5
ABC 1089.81 2173.59 1783.75 280.10 57.18 1
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Table 6: Descriptive statistics for compromised ER over schedule horizon

Pollutant Emission (lb)
-----------------------------------------------------------------------------------------------------------------------------------------------

Methods Minimum Maximum Mean Std. Deviation Std Error Rank

DE 187.90 1735.27 817.29 478.15 97.60 10
MODE 208.25 1870.97 942.31 508.68 103.83 11
PSO 181.17 1475.72 754.88 449.26 91.70 9
SOHPSO_TVAC 158.77 1345.94 708.46 386.98 78.99 8
SA-MOCDE 248.81 1351.76 727.68 302.36 61.72 3
IGSA 290.96 1032.12 744.53 295.33 60.28 2
DCPSO 160.69 1429.00 688.62 327.63 66.88 5
HCRO 194.19 1316.49 734.29 340.22 69.45 7
IMOGSA 257.11 1339.63 723.11 304.04 62.06 4
SDE 324.34 1345.60 749.23 333.39 68.05 6
ABC 250.74 1039.14 683.43 288.84 58.96 1

Table 7: Model summary of one way ANOVA for compromised FC over schedule horizon

ANOVA with F Test

Attributes Sum of Squares df Mean Square F Sig.

Between People 2.529E7 23 1099544.454 7.541 .000
Within People Between Items 1954355.380 10 195435.538

Residual 5961068.799 230 25917.690
Total 7915424.179 240 32980.934
Total 3.320E7 263 126254.550

Grand Mean = 1823.3180

Table 8: Model summary of one way ANOVA for compromised ER over schedule horizon

ANOVA with F Test

Attributes Sum of Squares df Mean Square F Sig

Between People 2.871E7 23 1248266.084 4.543 .000
Within People Between Items 1269685.593 10 126968.559

Residual 6427447.220 230 27945.423
Total 7697132.814 240 32071.387
Total 3.641E7 263 138430.619

Grand Mean = 752.1657

presented in Tables 5 and 6 respectively. Furthermore, the respectively. Here, the “sig.” value is compared with alpha
ranking of each optimization was tabulated according to (Which is usually. 05, as known from literature). The
standard deviation to help provide a clear picture of the decision rule is that the significance value (p) is less than
consensus reached by the optimization technique. As the alpha, the null hypothesis should be rejected otherwise
ABC algorithm has the lowest standard deviation, it is the null hypothesis should not be rejected. In this case as
ranked first. Additionally, the smallest standard error p (.000) < alpha (0.05) the null hypothesis should be
suggests that most sample means are similar to the rejected and there was a significant difference between
population mean and so the sample is likely to be an the  groups  as  F (10,  230) =7.541, p=.000 for FC and F
accurate reflection of the population. (10, 230) =4.543, p=.000 for pollutant emission over the

Parametric Statistic Test: The SPSS software offers a
parametric statistic test to study the significant difference Nonparametric Statistic Test: The Wilcoxon signed rank
between the results of FC and pollutant emission was test is a nonparametric statistic analysis that has
obtained by the listed optimization methods. The performed using SPSS to show significant statistical
statistics ANOVA summary table was obtained and the differences among the compromised FC and pollutant
subsequent predictions are shown in the Tables 7 and 8 emission  was  obtained  by  ABC   and   other  contestant

schedule horizon.
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Table 9: Wilcoxon signed rank test statistics for compromised FC over the schedule horizon
Sum of the ranks Sig. Sum of the ranks Sig.
----------------------------------------------- ---------------------------------------------

Pairwise Comparison R R p-value Pairwise Comparison R R p-value+ - + -

ABC- DE 298 2 .000 ABC- IGSA 297 3 .000
ABC- MODE 298 2 .000 ABC- DCPSO 261 39 .001
ABC- PSO 284 16 .000 ABC- HCRO 297 3 .000
ABC- SOHPSO_TVAC 297 3 .000 ABC-IMOGSA 300 0 .000
ABC- SA-MOCDE 300 0 .000 ABC-SDE 299 1 .000

Table 10: Wilcoxon signed rank test statistics for compromised ER over the schedule horizon
Sum of the ranks Sig. Sum of the ranks Sig.
----------------------------------------------- ---------------------------------------------

Pairwise Comparison R R p-value Pairwise Comparison R R p-value+ - + -

ABC- DE 296 4 .000 ABC- IGSA 296 4 .000
ABC- MODE 297 3 .000 ABC- DCPSO 262 38 .0005
ABC- PSO 274 26 .000 ABC- HCRO 297 3 .000
ABC- SOHPSO_TVAC 297 3 .000 ABC-IMOGSA 300 0 .000
ABC- SA-MOCDE 298 2 .000 ABC-SDE 297 3 .000

algorithms.  The  experimental   results   were  presented CONCLUSION
in the   Tables   9   and   10,  it   shows   the   R ,   R   and+ -

p-values computed for all the pairwise comparisons In  this  paper at first the conflict objectives of such
concerning  ABC.  In  order  to  draw  inferences  about FC and pollutant ER are optimized simultaneously using
the  tabulated  results  two hypotheses, the null ABC algorithm and the implication of normalized price
hypothesis H  and the alternative hypothesis H , are penalty factor approach was exerted trade-off between0 1

defined. The null hypothesis is a statement of no them.
significant difference between algorithms, whereas the Second a statistical test using SPSS software is
alternative hypothesis represents the presence of a conducted with the simulated results of the proposed and
significant  difference  between algorithms. From the previous methods over a scheduled horizon. The
tables, it can be stated that the p values are.000 at the descriptive statistic test has ranked the ABC algorithm in
significance level  = 0.05. The p < 0.05 is the stronger first for solving HTS problem, whereas one-way ANOVA
evidence  to  reject  null  hypothesis H    which  means test was proved that the ABC has a significant difference0

that  the  ABC shows a significant improvement to between the groups and Wilcoxon signed rank test has
minimize  FC  and  reduction  in pollutant emission over confirmed its solution quality. Thus, it is inferred that the
DE [2] MODE [3] PSO [4] SOHPSO_TVAC [6] SA- ABC algorithm can be a robust and cost-effective
MOCDE [8] IGSA [9] DCPSO [10] HCRO [11] IMOGSA alternative for hydrothermal energy management
[12] SDE [13]. considering emission aspects.

Nomenclature:

F, E : Total fuel cost ($) and emission release (lb)
T : Scheduling period in hour
t : Sub-interval
k, m : Index number
N : Number of thermal unitss

N : Number of hydro unitsh

P , P : Generation of i  thermal unit in t  sub-intervalsit hj,t
th th

P : Generation of j  hydro unit in t  sub-intervalhj,t
th th

P ,P : Minimum and maximum generation limit of i  thermal unitsi si
min max th

P ,P : Minimum and maximum generation limit of j  hydro unithj hj
min max th

a , b , c : Coefficients of the fuel cost curve of i  thermal unitsi si si
th
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e , f : Valve point effect coefficient of i  thermal unitsi si
th

, , , , : Emission curve coefficients of i  thermal plantsi si si si si
th

P : Total power demand in the t  intervalD,t
th

P : Total network loss in the t  intervalL,t
th

B , B , B : Loss coefficientij oi oo

P , P : Power generation of the i  and j  index of plants in the hybrid hydrothermal system.i,t j,t
th th

C , C , C , C , C , C , : Power generation coefficient of j  hydro unit1j 2j 3j 4j 5j 6j
th

V : Storage volume of j  reservoir at time thj,t
th

Q : Water discharge rate of j reservoir at time thj,t
th

V (j) V  (j) : Initial and final reservoir volumesh h
begin end

I : Natural inflow of j  hydro reservoir at time th
th

R : Number of upstream plantsu

: Water transport time delay to immediate downstream plant in hours
Q , Q , : Minimum and maximum water discharge rate of j  reservoirhj hj

min max th

V , V , : Minimum and maximum storage volume of j reservoirhj hj
min max th

x , x , : Lower and upper ranges of k  food source in dimension lhj hj
min max th

: Uniform random number between [-1, 1]k,l

x : Randomly selected food source in dimension lm,l

rand : Random number between [0, 1]
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