
Middle-East Journal of Scientific Research
24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016
ISSN 1990-9233; © IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.RIETMA107

Corresponding Author: A. Vanathi, Department of Computer Science and Engineering, Priyadarshini Engineering College,
Vaniyambadi

33

Optimization of Dynamic Slot Allocation Scheme In Hadoop MRV1

A. Vanathi and G. Praveena

Department of Computer Science and Engineering, Priyadarshini Engineering College, Vaniyambadi

Abstract: Map reduce is a large scale computing paradigm in cloud computing system for data processing. Poor
performance is result in slot-oriented Map Reduce system. To overcome this, we introduce three resource
allocation schemes. First, because of pre-configured distinct map slots and reduce slots which are not used,
slots can e fully utilized. We proposed alternate technique called Dynamic slot allocation Scheme (DSAS), it
allows slot to reallocate or reduce slots based on its need. Second, we propose Execution Performance
balancing Scheme to balance the performance criteria between single job and group of jobs. Finally we
proposed a Slot Prescheduling technique that can data locality with cost fairness. Thus we produce a system
called DyanamicMR to improve the performance Map Reduce data set significantly. The experimental results
shows the DynamicMR improve the performance of Hadoop mr1sustantially and also maintains the fairness.

Key words: Cloud Computing Resource allocation MapReduce Slot Allocation

INTRODUCTION Even under the optimal job submission order as well

In recent years, MapReduce has become the parallel can be many idle reduce (or map) slots while map
computing paradigm of choice for large-scale data (or reduce) slots are not enough during the
processing in clusters and data centers. A MapReduce computation, which adversely affects the system
job consists of a set of map and reduce tasks, where utilization and performance.
reduce tasks are performed after the map tasks. Hadoop
[1], an open source implementation of MapReduce, has In our work, we address the problem of how to
been deployed in large clusters containing thousands of improve the utilization and performance of MapReduce
machines by companies such as Yahoo! And Facebook to cluster without any prior knowledge or information (e.g.,
support batch processing for large jobs submitted from the arriving time of MapReduce jobs, the execution time
multiple users (i.e., MapReduce workloads). In a Hadoop for map or reduce tasks) about MapReduce jobs. Our
cluster, the compute resources are abstracted into map solution is novel and straightforward: we break the former
(or reduce) slots, which are basic compute units and first assumption of slot allocation constraint to allow (1).
statically configured by administrator in advance. Due to Slots are generic and can be used by map and reduce
1) the slot allocation constraint assumption that map slots tasks. (2). Map tasks will prefer to use map slots and
can only be allocated to map tasks and reduce slots can likewise reduce tasks prefer to use reduce slots.
only be allocated to reduce tasks and 2) the general In other words, when there are insufficient map slots,
execution constraints that map tasks are executed before the map tasks will use up all the map slots and then
reduce tasks, we have two observations: borrow unused reduce slots. Similarly, reduce tasks can

There are significantly different performance and greater than the number of reduce slots. In this paper, we
system utilization for a MapReduce workload under will focus specifically on Hadoop Fair Scheduler (HFS).
different job execution orders and map/reduce slots This is because the cluster utilization and performance for
configurations and the whole MapReduce jobs under HFS are much poorer

as the optimal map/reduce slots configuration, there

use unallocated map slots if the number of reduce tasks is

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

34

(or more serious) than that under FIFO scheduler. But it is from each map task. In the sort/reduce phase, the reduce
worth mentioning that our solution can be used for FIFO tasks sort intermediate data and then aggregate the
scheduler as well. HFS is a two-level hierarchy, with task intermediate values for each key to produce the final
slots allocation across ”pools” at the top level and slots output. The number of reduce tasks for a job is not
allocation among multiple jobs within the pool at the determined, which always depends on the intermediate
second level [2]. We propose two types of Dynamic map as outputs.
Hadoop Fair Scheduler (DHFS), with the consideration of The number of reduce tasks for a job to be 0:95× or
different levels of fairness (i.e., poolleveland cluster-level). 1:75×reduce tasks capacity [4] hadoop, there are many job
They are as follows: schedulers, i.e., FIFO, Hadoop Fair Scheduler [2] Capacity

Pool-Independent DHFS (PI-DHFS): The dynamic slots by the jobTracker, which manages a set of taskTrackers.
allocated from the cluster-level, instead of pool-level. It is In taskTracker has a limited number of map slots and
a typed phase-based dynamic scheduler, i.e. the tasks for reduce slots, configured by the user by advance. They
map have priority in the use of map slots and tasks reduce can perform in one slot per CPU core in order to make CPU
have priority to reduce slots (i.e., intra-phase dynamic and memory management on slave nodes. In task Trackers
slots allocation). Only when the respective phase slots report periodically to the jobTracker the number of free
requirements are met can excess slots be used by the slots and the progress of the running tasks. In jobTracker
other phase (i.e., interphase to the dynamic slots allocates the free slots to the tasks to free jobspace.
allocation). The map slots can only be allocated to map tasks and

Pool-Dependent DHFS (PD-DHFS): The assuming that mapreduce function.
each pool is selfish, i.e., each pool will always satisfy its Hadoop Fair Scheduler [5] a multi-user mapreduce
own map and reduce tasks with its shared map and reduce job scheduler that allow group of organization to share a
slots between its map-phased pool and reduce-phased large cluster to multiple users. It ensures that all jobs get
pool (i.e., intra-pool dynamic slots allocation) Then, roughly an equal share the slot resources phase. It
sharing the unused slots with alternative overloaded organizes jobs into pools and shares resources fairly
pools (i.e., inter pool dynamic slots allocation). across all pools. Each user have allocated a separate

It has been to designed and implemented the two pool and, gets an equal share of the cluster how many
DHFSs on top of default HFS. We evaluate the jobs they submitted. The pool consists of two parts:
performance and fairness of our proposed algorithms by map-phase pool and reduce-phase pool. Within each
the synthetic workloads. Both schedulers, PI-DHFS and map/reduce-phase pool, is used to share map/reduce slots
PD-DHFS, have used for it. between the running jobs at each phase. Pools can also

MapReduce: Initially map reduce proposed by Google [3].
It is a popular programming model for processing large Related Work: In research work based on large that
data sets. Now it has been a standard for large scale data focuses on the performance development for MapReduce
processing on the cloud computing. Hadoop [1] an open- jobs. Broadly, it can be classified into the following two
source java implementation of MapReduce. When a client categories,
submits jobs to the Hadoop cluster, its system breaks
each job into multiple map tasks and reduces tasks. Data Access and Sharing Optimization: Jiang et al. [6]
Each map task processes (i.e. scans and records) a data oppose a set of ideas of low-level optimizations include
block and outcomes is intermediate results like the improving I/O speed, utilizing indexes, using
key-value pairs. The number of map tasks for a job is fingerprinting for faster key comparisons and block size
determined by input data. In hadoop there is one map task tuning. They were focused on fine-grain tuning with
per data block. In mapreduce execution time for a map task muliple parameters to reach performance development.
is determined by an input block of data size. The reduce A grawal et al. [6] proposed a method to maximize
tasks consists of shuffle/sort/reduce phases. The shuffle scan sharing by grouping MapReduce jobs into batches
phase, the reduce tasks fetch the intermediate outputs so that sequential scans of large files are shared among as

Scheduler [4] he job scheduling in Hadoop is performed

reduce slots can only be allocated to reduce tasks in

be given weights to share the cluster.

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

35

many simultaneous jobs as possible. MRShare [7] is a Polo et al. [18] a resource based scheduling technique for
sharing framework provides three possible work-sharing MapReduce multi-job workloads for improving resource
opportunities, include scan sharing, mapped outputs utilization with the help of extending the abstraction to
sharing and Map function sharing across multiple traditional ’task slot’ of Hadoop to ’job slot’, with an
MapReduce jobs, thereby reduce total processing time execution slot that is bound it to a particular job band task
and to avoid performing redundant work. MapReduce type (map or reduce) within that job. In contrast, our
Online is a modified MapReduce system to support online proposed schedulers has traditional task slot model and
aggregation for MapReduce jobs that can perform by maximize the system utilization by dynamically allocating
pipelining data within a job and between jobs. LEEN unused map (or reduce) slots to overloaded reduce
addresses the integrity and data localities. Our approach (or map) tasks.
can be incorporated into these modified MapReduce
frameworks (e.g., MRShare, MapReduce Online [8] for Proposed System: Hadoop MRv1 uses the slot-based
further performance improvement. In contrast, our work resource model with the static configuration of
belongs to the computation and scheduling optimization. map/reduce slots. There is a strict utility constrain that
Inscence improving performance for MapReduce map tasks can only run on map slots and reduce tasks can
workloads by maximum the cluster computation utilization. only use reduce slots. Due to the rigid execution order

Computation and Scheduling Optimization: In some environment, slots can be severely under-utilized, which
computation optimization and job scheduling work are significantly degrades the performance.
related to our work [9, 10, 11, 12, 13]. Assume job ordering In contrast to YARN that gives up the slot-based
optimization for MapReduce workloads. They model the resource model and propose a container-based model to
MapReduce as a two-stage hybrid flow shop with maximize the resource utilization via unawareness of the
multiprocessor tasks [14], In job submission orders will be types of map/reduce tasks, we keep the slot-based model
different result in varied cluster utilization and system and propose a dynamic slot utilization optimization
performance. There is an assumption that the execution system called DynamicMR to improve the performance of
time for map and reduce tasks for each job, which may not Hadoop by maximizing the slots utilization as well as slot
be available in many real-world applications. utilization efficiency while guaranteeing the fairness

In order for only suitable for independent jobs, but across pools.
fails to consider those jobs with dependency, e.g., It consists of three types of scheduling components,
MapReduce workflow. In DHFS is not constraint by such namely, Dynamic Hadoop Fair Scheduler (DHFS),
assumption and can be used for any types of MapReduce Dynamic Speculative Task Scheduler (DSTS) and Data
workloads (i.e., independent and dependent jobs). Locality Maximization Scheduler (DLMS).
Hadoop configuration optimization is another approach, Our tests show that DynamicMR [19] outperforms
including [15, 16]. For example, Starfish [11] is a self YARN for MapReduce workloads with multiple jobs,
tuning framework based on the Hadoop’s configuration especially when the number of jobs is large. The
automatically for a MapReduce job such that the explanation is that, given a certain number of resources,
utilization of Hadoop cluster can be maximize, based on it is obvious that the performance for the case with a
the cost based model and sampling technique. ratio control of concurrently running map and reduce

In an optimal Hadoop configuration, e.g., Hadoop tasks is better than without control. Because without
map and Hadoop reduce slots, there is still room for control, it easily occurs that there are too many reduce
performance development of a MapReduce job by tasks running, causing the network to be a bottleneck
maximizing the utilization of map and reduce slots. seriously.
Guo et al. [17] method to enable running tasks to steal For YARN, both map and reduce tasks can run on
resources reserved propose a resource stealing for idle any idle container. There is no control mechanism for the
slots and give them back proportionally whenever new ratio of resource allocation between map and reduce
tasks were assigned, by adopting multithreading tasks. It means that when there are pending reduce tasks,
technique for running tasks on multiple CPU cores. the idle container will be most likely possessed by them.
where it cannot work for the utilization development of In contrast, DynamicMR follows the traditional slot-based
those pure idle slave nodes without any running tasks. model.

between map and reduce tasks in a MapReduce

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

36

In contrast to the ’hard’ constrain of slot allocation
that map slots have to be allocated to map tasks and
reduce tasks should be dispatched to reduce tasks,
DynamicMR obeys a ’soft’ constrain of slot allocation to
allow that map slot can be allocated to reduce task and
vice versa. But whenever there are pending map tasks, the
map slot should be given to map tasks first and the rule is
similar for reduce tasks.

It means that, the traditional way of static map/reduce
slot configuration for the ratio control of running
map/reduce tasks still works for DynamicMR. In
comparison to YARN which maximizes the resource
utilization only, DynamicMR can maximize the slot
resource utilization and meanwhile dynamically control Fig. 1: DynamicMR Framework
the ratio of running map/reduce tasks via map/reduce slot
configuration. Dynamic Hadoop Slot Allocation (DHSA): In the current

The proposed system, to address the mentioned configuration of MapReduce as an under-usage of the
problems, this paper presents DynamicMR, a dynamic slot slots with the quantity of map and reduce tasks with the
allocation framework to develop the performance of a shifts over the long run. Our dynamic slot allocation
MapReduce cluster via optimizing the slot utilization. approach is taking into account the approach that at the
Specifically, DynamicMR focuses on Hadoop Fair peculiar time there will be idle map slots(or reduce), as the
Scheduler (HFS). Because the cluster utilization and jobs continues from map stage to reduce stage. We may
performance for MapReduce jobs under HFS are much utilize the unused map slots. Those overburden reduce
poorer than that under FIFO scheduler. tasks to enhance the execution of the MapReduce

DynamicMR consists of three optimization techniques, For further make utilization of idle reduce slots for

Dynamic Hadoop Slot Allocation (DHSA) for an current MapReduce structure that the map tasks
Speculative Execution Performance Balancing (SEPB) can just run on map slots and reduced tasks can just run
Slot PreScheduling. on reduce slots. There are two challenges specified below

The performance and slot utilization of a Hadoop
cluster can be optimized with the following step by step (C1): Fairness is an imperative metric in Hadoop Fair
processes. Scheduler (HFS). We proclaim it as reasonable when all

If a slot is idle, then DynamicMR will first attempt to resource. In HFS, task slots are first allocated over the
improve the slot utilization with DHSA technique. pools [9] and later then the slots are distributed to the
It will evaluate based on numerous constraints like jobs inside the pool. Also, a MapReduce job computation
fairness, load balance and decide whether to allocate embodies two sections: map-phase task computation and
the idle slot to the task or not. reduce-phase task computation.
If the allocation is true, DynamicMR will further
optimize the performance by improving the efficiency (C2): The resource requirement between the map slots
of slot utilization with SEPB. It works on top of and reduced slots are especially diverse. The purpose for
Hadoop speculative scheduler to check whether to this is the map tasks and reduced tasks regularly show
allocate the accessible idle slots to the pending tasks totally different execution designs. Reduce task has a
or to the speculative tasks. tendency to expend considerably more resources, for
When to allocate the idle slots for pending/ example, memory and system network speed. Basically
speculative map tasks, DynamicMR will be able to permitting reduce tasks to utilize map slots configuring
additional improve the slot utilization efficiency from every map slots to take more resources, which will
the data locality optimization aspect with Slot Pre therefore lessen the powerful number of slots on every
Scheduling. node, creating resources under-used amid runtime.

workload and the other way around.

running map tasks are used. We break the certain phase

that must be considered:

pools have been designated with the same amount of

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

37

With a due appreciation towards (C1), we set forth a Thus, we can restrict the quantity of unused map and
Dynamic Hadoop Slot Allocation (DHSA). It contains two reduced slots that ought to be distributed for map and
choices, to be specific, pool- free DHSA(PI-DHSA)pool- reduced tasks at every pulse of that task tracker.
Independent DHSA (PI-DHSA) HFS utilizes max-min With these two parameters, clients can flexibly adjust the
fairness [20] to allocate slots crosswise over pools with exchange off between the performance execution
least ensures at the map-phase and reduce-phase, optimization and the starvation minimization.
individually. In addition, Challenge (C2) makes us to review that

we can't treat map and reduce slots as same and just
Pool-Independent DHSA (PI-DHSA): Pool-Independent obtain unused slots for map and reduce tasks. Rather, we
DHSA (PI-DHSA) extends the HFS by provision slots should be mindful of shifted resource sizes of map and
from the clusters of worldwide level and free of pools. The reduce slots. A slot weight- based methodology is
allocation procedure is comprised of two sections: therefore proposed to address the issue. We allot the

Intra-phase dynamic slot allocation: Each pool is regarding the asset configurations. Particular to the
piece into two sub-pools, i.e., map phase pool and weights, we can alterably decide the amount of map and
reduce phase pool. At every stage, every pool will reduce a task which has to be generate in the length of
search out its share of slots. runtime.
Inter-phase dynamic slot allocation: Behind the intra-
phase dynamic slot allocation for both the map phase Algorithm 1: the Dynamic Task Assignment Policy for
and reduced phase, next we can perform the dynamic Task Tracker under PI-DHSA:
slot allocation crosswise more typed phase. When a heartbeat is received from a compute node n:

The intact dynamic slot allocation flow is that, at clusterUsedReduceSlots, mapSlotsDemand,
whatever point a pulse is gotten from a computing node, reduceSlotsDemand, mapSlotsLoadFactor and
at first we process the amassed demand for map slots and reduceSlotsLoad-Factor.
reduce slots for the present MapReduce workload. 2: /*Case 1: both map slots and reduce slots are
At that point we focal point alertly the need to acquire sufficient.*/
map (or reduce) slots for reduce (or map) tasks in light of 3: if (mapSlotsLoadFactor?? 1 and
the interest for map and reduce slots, with revere to these reduceSlotsLoadFactor?? 1) then
four situations. The specific number of map (or reduce) 4: //No borrow operation is needed.
slots to be obtained is based on the account of capacity 5: end if
of unused reduced (or map) slots and its map (or reduce) 6: /*Case 2: both map slots and reduce slots are not
slots needed. To achieve the reluctance usefulness, we enough.*/
give two variables rate Of Borrowed Map Slots and rate 7: if (mapSlotsLoadFactor_ 1 and
Of- Borrowed Reduce Slots, defined as the rate of vacant reduceSlotsLoadFactor_ 1) then
map and reduced slots that can be obtained, separately. 8: //No borrow operation is needed.

Fig. 2: Fairness-based slot allocation flow for PIDHSA 15: end if

map and reduce slots with distinctive weight values,

1: compute its clusterUsedMapSlots,

9: end if
10: /*Case 3: map slots are enough, while reduce slots
are insufficient. It calculates borrowed map slots for
reduce tasks.*/
11: if (mapSlotsLoadFactor_ 1 and
reduceSlotsLoadFactor_ 1) then
12: currentBorrowedMapSlots= clusterUsedMapSlots-
clusterRunningMapTasks;
13: extraReduceSlotsDemand= min{max{ floor{
clusterMapCapacity* percentageOfBorrowedMapSlots}
- currentBorrowedMapSlots, 0}, reduceSlotsDemand-
clusterReduceCapacity}
14: updatedMapSlotsLoadFactor= (mapSlotsDemand+
extraReduceSlotsDemand) / clusterMapCapacity;

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

38

16: /*Case 4: map slots are insufficient, while reduce Case (a): mapSlotsDemand<reduceShare and reduceSlots-
slots are enough. It calculates borrowed reduce slots for Demand >reduceShare. We can use of the unused map
map tasks.*/ slots for its overloaded reduce tasks from its reduce-
17: if (mapSlotsLoadFactor_ 1 and phase pool first before using other pools.
reduceSlotsLoadFactor_ 1) then
1 8 : c u r r e n t B o r r o w e d R e d u c e S l o t s = Case (b): mapSlotsDemand>mapShare and reduceSlots-
clusterUsedReduceSlots- clusterRunningReduceTasks; Demand <reduceShare. we can use some unused reduce
19: extraMapSlotsDemand= min{max{ floor{ slots for its map tasks from its map-phase pool first before
c l u s t e r R e d u c e C a p a c i t y * using pools.
p e r c e n t a g e O f B o r r o w e d R e d u c e S l o t s } -
currentBorrowedReduceSlots, 0}mapSlotsDemand- Case (c): mapSlotsDemand<mapShare and reduceSlots-
clusterMapCapacity} Demand <reduceShare. Both map slots and reduce slots
2 0 : u p d a t e d R e d u c e S l o t s L o a d F a c t o r = are enough for its use. It can give some unused map slots
(reduceSlotsDemand+ extraMap- SlotsDemand) / and reduce slots to other pools.
clusterReduceCapacity;
21: end if Case (d): mapSlotsDemand>mapShare and reduceSlots-
22: compute availableMapSlots and availableReduceSlots Demand >reduceShare. If both map slots and reduce slots
based on the updated map/reduce load factor and used of a pool have become insufficient. It may have to borrow
slots. some unused map or reduce slots from other pools

Pool-Dependent DHSA (PD-DHSA): below.

Fig. 3: Pool-Dependent DHSA. slots are not enough even after Intra-pool dynamic

As an opposite point on checking towards PI-DHSA
Pool-Dependent DHSA (PD-DHSA) considers fairness for The overall slot allocation process for PD-DHSA
the dynamic slot allocation across pools. Accepting that is as sketched down below in figure. At first, it computes
every pool, includes two sections: Map phase pool and the maximum number of free slots that can be allocated
Dynamic Phase pool, is selfish. It is considered fair when at each round of heartbeat for the task tracker. Next it
aggregate quantities of map and reduce slots allocated starts the slot allocation for pools. For every pool, there
across pools are the same with one another. PD-DHSA are four possible slot allocations as illustrated in Figure
will be performed with the accompanying two courses of below.
actions:

Intra-Pool Dynamic Slot Allocation: In an early process, map slots for the task tracker and there are pending map
each typed- phase pool will receive its share of typed- tasks for the pool.
slots in an max-min fairness at all phase. It has four
possible relationships cases for every pool regarding its Case (2): If the attempt of Case(1) fails, the condition
demand (denoted as mapSlots Demand, reduce Slots does not hold good and it level, we continue to try reduce
Demand) and its workload (marked as mapShare, tasks allocation when there are pending reduce tasks and
reduceShare) between two phases: idle reduce slots.

through inter-Pool dynamic slot allocation is shown

Inter-Pool Dynamic Slot Allocation:

It is obvious that,

If a pool, has mapSlotsDemand + reduce
SlotsDemand<mapShare + reduceShare. The slots are
enough for the pool and there is no need to get some
map or reduce slots from other pools
On the contrary, when mapSlotsDemand +
reduceSlotsDemandmapShare + reduceShare, the

slot allocation.

Case (1): We try the map tasks allocation, if there are idle

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

39

Fig. 4: The slot allocation flow for each pool under PD- 18: if (Case (2) failed and there are pending map tasks)
DHSA.The numbers labeled in the graph then
corresponds to Case (1)-(4). 19: attempt to allocate reduce slots for map tasks

(considering data locality) and jump out of loop if
Case (3): If Case(2) fails due to the required conditions allocation succeeded.
does not hold, we try for map task allocation again. If 20: end if
Case(1) fails then there might not have to be any idle map 21: /* Case (4): allocate map slots for reduce tasks from
slots available. In contrast, if Case(2) fails then there are Pool p*/
no pending reduce tasks. In this case, we can relay on 22: if (Case (3) failed and there are pending reduce tasks)
reduce slots for map tasks of the pool. then

Case (4): If Case(3) fails, we try for reduce task allocation out of loop if allocation succeeded.
once again. Case(1) and Case(3) fail might be because of 24: end if
no valid locality-level pending and map tasks available, 25: end for
but there are idle map slots. In contrast, Case(2) maight 26: /* Case (5): schedule the non-local map tasks when
not have any idle reduce slots available. At such cases, its node-local tasks cannot be satisfied. */
we can allocate map slots for reduce tasks for the pool. 27: if (Case (1)-(4) failed) then

Algorithm 2: the Dynamic Task Assignment Policy for 29: if (there are pending map tasks) then
Tasktracker under PD-DHSA: 30: attempt to allocate map/reduce slots to map tasks (not
When a heartbeat is received from tasktrackertts: considering data locality) and jump out of loop if
1: Compute its totalSlotsDemand, totalSlotsCapacity, allocation succeeded.
trackerSlotsCapacity, trackerRunningTasksNum and 31: end if
trackerCurrentSlotsCapacity. 32: end for
2: /* Return when there are no idle slots. */ 33: end if
3 : if trackerRunningTasksNum ??
trackerCurrentSlotsCapacity then Furthermore, there is a special scenario that needs to
4: return NULL; be considered particularly. so, it is possible that all the
5: end if above four possible slot allocation attempts fail for all
6: for (i = 0; i _ trackerCurrentSlotsCapacity - pools, due to the data locality for map tasks.
trackerRunningTasksNum; i++) do
7: Sort pools by distance below min and fair share CONCLUSION
8: for (Pool p : pools) do
9: /* Case (1): allocate map slots for map tasks from This paper proposes a DynamicMR Technique can
Pool p*/ be use to improve the execution of MapReduce workloads

10: if (there are pending map tasks and idle map slots)
then
11: attempt to allocate map slots for map tasks
(considering data locality) and jump out of loop if
allocation succeeded.
12: end if
13: /* Case (2): allocate reduce slots for reduce tasks
from Pool p*/
14: if (Case (1) failed and there are pending reduce tasks
and idle reduce slots) then
15: attempt to allocate reduce slots for reduce tasks and
jump out of loop if allocation succeeded.
16: end if
17: /* Case (3): allocate reduce slots for map tasks from
Pool p*/

23: attempt to allocate map slots for reduce tasks and jump

28: for (Pool p : pools) do

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 33-40, 2016

40

while charge up the fairness. It comprises of three 8. Condie, T., N. Conway, P. Alvaro, J.M. Hellerstein,
methods, in exacting DHSA, SEPB and Slot 2010. MapReduce online. In Proceedings of the 7th
PreScheduling, all of which consider on the slot use USENIX conference on Networked Systems Design
optimization for MapReduce assembly from alternate and Implementation, pp: 21C21.
points of view. DHSA concentrates on the slot use 9. Moseley, B., A. Dasgupta, R. Kumar, T. Sarl, 2011. On
extension by distributing map or reduce slots to map and scheduling in map-reduce and flow-shops. SPAA,
reduce tasks alterably. pp: 289-298.

Especially, it doesn't have any presupposition or 10. Verma, A., L. Cherkasova and R.H. Campbell, 2013.
involve any earlier learning and can be utilized for any Orchestrating an Ensemble of MapReduce Jobs for
sorts of MapReduce jobs (e.g., autonomous or Minimizing Their Makespan, IEEE Transaction
subordinate ones). Two sorts of DHSA are introduced, in Ondependency and Secure Computing.
particular, PI-DHSA and PD-DHSA, in view of distinctive 11. Verma, A., L. Cherkasova, R. Campbell, 2012. Two
levels of fairness. Client can choose both of them likewise. Sides of a Coin: Optimizing the Schedule of
Rather than DHSA, SEPB and Slot PreScheduling with the MapReduce Jobs to Minimize Their Makespan and
effectiveness advancement for a specified slot usage. Improve Cluster Performance. MASCOTS.
SEPB recognizes the slot unused issue of hypothetical 12. Tang, S.J., B.S. Lee and B.S. He, 2013. MROrder:
execution. Flexible Job Ordering Optimization for Online

It can adjust the execution trade off between a single MapReduce Workloads. in Euro-Par, pp: 291-304.
job and a batch of job alterably. Slot PreScheduling 13. Tang, S.J., B.S. Lee, R. Fan and B.S. He, 2013.
enhances the proficiency of slot use by growing its data Performance Optimization for MapReduce
locality. By empowering the over three systems to work Workloads, CORR (Technical Report).
helpfully, the examining results demonstrate that our 14. O¢guz, C. and M.F. Ercan, 1997. Scheduling
proposed DynamicMR can develop the execution of the multiprocessor tasks in a two-stage flow-shop
Hadoop framework altogether. environment. Proceedings of the 21st international

 In future, we plan to believe executing DynamicMR conferenceon Computers and Industrial Engineering,
for distributed computing surroundings with more pp: 269-272.
measurements (e.g., plan, due date) considered and 15. Herodotou, H., H. Lim, G. Luo, N. Borisov, L. Dong,
distinctive stages. F.B. Cetin and S. Babu, 2011. Starfish: A Self-tuning

REFERENCES 261C272.

1. Hadoop. http://hadoop.apache.org. Analysis and Costbased Optimization of MapReduce
2. Zaharia, M., D. Borthakur, J. Sarma, K. Elmeleegy, Programs. in Proc. of the VLDB Endowment, 4(11).

S. Schenker and I. Stoica, 2009. Job Scheduling for 17. Guo, Z.H., G. Fox, M. Zhou and Y. Ruan, 2012.
Multi-user Mapreduce Clusters. Technical Report Improving Resource Utilization in MapReduce. 2012
EECS-2009-55, UC Berkeley Technical Report. IEEE International Conference on Cluster Computing

3. Dean, J. and S. Ghemawat, 2004. MapReduce: (CLUSTER), pp: 402-410.
Simplified Data Processing on Large Clusters, In 18. Polo, J., C. Castillo and D. Carrera, et al., 2011.
Proceedings of the 6th Symposiumon Operating Resource-aware Adaptive Scheduling for
Systems Design and Implementation (OSDI). MapReduce Clusters. Proceeding Middleware’11

4. How Many Maps And Reduces. Proceedings ofthe 12th ACM/IFIP/USENIX
http://wiki.apache.org/hadoop/HowManyMapsAn international conference on Middleware, pp: 187-207.
dReduces. 19. Shanjiang Tang, Bu-Sung Lee, Bingsheng He, 2014.”

5. Ma x-M i n Fa i r n e s s (W i k i p e d i a) . DynamicMR: A Dynamic Slot Allocation
http://en.wikipedia.org/wiki/Maxmin fairness. Optimization” IEEE Transactions On Cloud

6. Agrawal, P., D. Kifer and C. Olston, 2008. Scheduling Computing, 2(3).
Shared Scans of Large Data Files. In VLDB. 20. Jiang, D.W., B.C. Ooi, L. Shi and S. Wu, 2010. The

7. Nykiel, T., M. Potamias, C. Mishra, G. Kollios and Performance of MapReduce:An Indepth Study,
N. Koudas, MRShare: Sharing Across Multiple PVLDB, 3: 472-483.
Queries in MapReduce . Proc. of the 36 VLDBth

(PVLDB), Singapore, September 2010.

System for Big Data Analytics. In CIDR, Pages

16. Herodotou, H. and S. Babu, 2011. Profiling, What-if

