
Middle-East Journal of Scientific Research
24 (Recent Innovations in Engineering, Technology, Management & Applications): 69-73, 2016
ISSN 1990-9233; © IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.RIETMA112

Corresponding Author: G. Jayagopi, Department of CSE, St.Peter’s University, Avadi, Chennai, India.

69

An Effective Amra in Frequent Itemset from Large Transaction Dataset

G. Jayagopi and S. Pushpa

Department of CSE, St.Peter’s University, Avadi, Chennai, India

Abstract: Frequent item set algorithms traverse the entire dataset in multiple passes, especially, the Apriori-like
algorithms, when new candidate n-itemset is generated. It traverses the entire dataset to compute its frequency
for generating frequent n-itemset and candidate (n+1)-itemset. If a dataset contains with large data size,which
is inevitable for todays organization, most if not all algorithms performed not as efficient needs. We therefore
attempt to solve these efficiency problems by proposing a Vertical – Apriori Map-reduce algorithm. Vertical
AMRA is based on data attribute identifier which is exploited as capability metric for mining frequency item-set
from large dataset in a single node that has no distributed and parallel computing system environment. Our
evaluations using synthetic datasets and data from public repository suggest that Vertical AMR algorithm can
offer superior efficiency in mining frequent item-sets from large transaction dataset.

Key words: Frequent item-set mining Mapreduce Apriori Big data

INTRODUCTION tuples into a smaller set of tuples. The reduce task is

In Information Communication Technology and input and the output are stored in a file-system. The
smart sensor technologies has enabled massive data framework takes care of scheduling tasks, monitoring
being transmitted and received across commercial, them and re-executes the failed tasks. The MapReduce
industrial and health care transaction processes. Such framework consists of a single master JobTracker and one
massive amount of transactional data has embedded slave TaskTracker per cluster-node. The master is
strategic and operational information that can be exploited responsible for resource management, tracking resource
by organisations management to make right time consumption/availability and scheduling the jobs
competitive advantage and sustainable growth decisions. component tasks on the slaves, monitoring them and re-
One of the key requirements for making right time executing the failed tasks. The slaves TaskTracker execute
decisions is the ef?cient mining of the big data analytics. the tasks as directed by the master and provide task-
Hadoop is the computing platform that enjoys a good status information to the master periodically. The
reputation as big data solution in recent years, since its JobTracker is a single point of failure for the Hadoop
core technique MapReduce [1] which inspired by Google MapReduce service which means if JobTracker goes
MapReduce [2]. down, all running jobs are halted. Apriori employs an

Hadoop MapReduce is a software framework for iterative approach known as level –wise search, where
easily writing applications which process big amounts k0itemsets are used to explored (k+1)-itemsets. First, the
of data in-parallel on large clusters (thousands of nodes) set of frequent 1-itemsets is found by scanning the
of commodity hardware in a reliable, fault-tolerant database to accumulate the count for each item and
manner.The term MapReduce actually refers to the collecting those items that satisfy minimum support. The
following two different tasks that Hadoop programs resulting set is denoted L1. Next, L1 is used to find L2, the
perform: (i).The Map Task: This is the first task, which set of frequent 2-itemsets, which is used to find L3 and so
takes input data and converts it into a set of data, where on, until no more frequent k-itemsets can be found. The
individual elements are broken down into tuples finding of each Lk requires one full scan of the
(key/value pairs). (ii)The Reduce Task: This task takes the database.To improve the efficiency of the level – wise
output from a map task as input and combines those data generation of frequent itemsets, an important property

always performed after the map task.Typically both the

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 69-73, 2016

70

called the Apriori property is used to reduce the search presented in item-TID-set format (i.e., {item: TID_set}),
space. The Apriori Principle: Any subset of a frequent where item is an item name and TID_set is the set of
itemset must be frequent. The Apriori property follows a transaction identifiers containing the item. This is known
two step process: (i) Join Step: C is generated by joining as the vertical data format [5].k

L with itself (ii) Prune Step: Any (k-1)-itemset that is not Mining frequent itemsets using the vertical datak-1

frequent cannot be a subset of a frequent k-itemset. format. Consider the vertical data format of the transaction
An interesting method in this attempt is called database, D, of Table 1. by scanning the data set once.

frequent pattern growth, or simply FP-growth, which
adopts a divide-and-conquer strategy as follows. First, it
compresses the database representing frequent items into
a frequent pattern tree, or FP-tree, which retains the
itemset association information. It then divides the
compressed database into a set of conditional databases
(a special kind of projected database), each associated
with one frequent item or “pattern fragment,” and mines
each database separately. For each “ pattern fragment,”
only its associated data sets need to be examined.
Therefore, this approach may substantially reduce the size
of the data sets to be searched,along with the “growth” of
patterns being examined.

Vertical frequent mining is different from traditional
hori-zontal frequent pattern mining method [3]. It
computes the inter- sections of Transaction IDs (TID,
which is identifer for each transaction) to achieve same
result with Apriori-like algorithms and this method only
traverses the entire dataset once, i.e one- pass. Hence
lesser mining time is required. By combining vertical
frequent mining method Mapreduce mechanism and
Apriori we propose a new algorithm known as VAMR
(Vertical Apriori Mapreduce) that is capable of mining
large transactional dataset in an efficient manner within a
single node [4]. VAMR algorithm will be tested using
self-generated synthetic datasets as well as public
dataset. We run experi- ments to support the efficient
mining performance of Vertical - AMR algorithm with
comparison to OPUS Miner and Apriori Mapreduce
separately. Another spin-off contribution of our research
is that our data generator also provides a new way to test
the frequent pattern mining algorithm, since it allows us to
generate different sizes of transactional datasets with the
same standard format of Frequent Itemset Mining Dataset
Repository.

Background
Vertical Frequent Mining: Both the Apriori and FP-
growth methods mine frequent patterns from a set of
transactions in TID-itemset format (i.e., {TID:itemset}),
where TID is a transaction ID and itemset is the set of
items bought in transaction TID. This is known as the
horizontal data format. Alternatively, data can be

Table 1: Vertical Data Format of the Transaction Data Set D
Itemset TID_set
I1 {T100,T400,T500,T700,T800,T900}
I2 {T100,T200,T300,T400,T600,T800,T900}
I3 {T300,T500,T600,T700,T800,T900}
I4 {T200,T400}
I5 {T100,T800}

Mining can be performed on this data set by
intersecting the TID_sets of every pair of frequent single
items [3, 6]. The minimum support count is 2. Because
every single item is frequent in Table1, there are 10
intersections performed in total, which lead to eight
nonempty 2-itemsets, as shown in Table 2.

Table 2: 2-Itemsets in Vertical Data Format
Itemset TID_set
{I1,I2} {T100,T400,T800,T900}
{I1,I3} {T500,T700,T800,T900}
{I1,I4} {T400}
{I1,I5} {T100,T800}
{I2,I3} {T300,T600,T800,T900}
{I2,I4} {T200,T400}
{I2,I5} {T100,T800}
{I3,I5} {T800}

Notice that because the itemsets {I1,I4} and
{I3,I5}each contain only one transaction, they do not
belong to the set of frequent 2-itemset.

Based on the Apriori property, a given 3-itemset is a
candidate 3-itemset only if every one of its 2-itemset
subsets is frequent. The candidate generation process
here will generate only two 3-itemsets:{I1,I2,I3} and
{I1,I2,I5}.

Table 3: 3-Itemsets in Vertical Data Format
Itemset TID_set
{I1,I2,I3} {T800,T900}
{I1,I2,I5} {T100,T800}

By intersecting the TID_sets of any two
corresponding 2-itemsets of these candidate 3-itemsets,it
derives Table 3. Where there are only two frequent 3-
itemsets:{I1,I2,I3:2} and {I1,I2,I5:2}.

The process of mining frequent itemsets by exploring
the vertical data format. First, we transform the
horizontally formatted data into the vertical format by

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 69-73, 2016

71

scanning the data set once. The support count of an run), MapReduce can be applied to significantly larger
itemset is simply the length of the TID_set of the itemset. datasets than "commodity" servers can handle – a large
Starting with k=1, the frequent k-itemsets can be used to server farm can use MapReduce to sort a petabyte of data
construct the candidate (k+1)-itemsets based on the in only a few hours.The parallelism also offers some
Apriori property.The Computation is done by interection possibility of recovering from partial failure of servers or
of the TID_sets of the frequent k-itemsets to compute the storage during the operation: if one mapper or reducer
TID_sets of the corresponding (k+1)-itemsets. This fails, the work can be rescheduled – assuming the input
process repeats, with k incremented by 1 each time, data is still available.
until no frequent itemsets or candidate itemsets can be Another way to look at MapReduce is as a 5-step
found. parallel and distributed computation:

Besides taking advantage of the Apriori property in
the generation of candidate (k+1)-itemset from frequent k- Prepare the Map() Input: the "MapReduce system"
itemsets, another merit of this method is that there is no designates Map processors, assigns the input key value
need to scan the database to find the support of (k+1) - K1 that each processor would work on and provides that
itemsets (for k=1). processor with all the input data associated with that key

This is because the TID_set of each k-itemset carries value.
the complete information required for counting such
support. However, the TID_sets can be quite long, taking Run the User-Provided Map() Code: Map() is run exactly
substantial memory space as well as computation time for once for each K1 key value, generating output organized
intersecting the long sets [7]. by key values K2.

To further reduce the cost of registering long
TID_sets, as well as the subsequent costs of "Shuffle" the Map Output to the Reduce Processors:
intersections, we can use a technique called diffset, which the MapReduce system designates Reduce processors,
keeps track of only the differences of the TID_sets of a assigns the K2 key value each processor should work on
(k+1)-itemset and a corresponding k-itemset. For instance, and provides that processor with all the Map-generated
in example we have {I1}={T100,T400,T500,T700, data associated with that key value.
T800,T900} and {I1,I2}= {T100, T400,T800,T900}.
The diffset between the two is diffset ({I1,I2}, {I1}) = Run the User-Provided Reduce() Code: Reduce() is run
{T500,T700}. Thus, rather than recoding the four TIDs exactly once for each K2 key value produced by the Map
that make up the intersection of {I1}and {I2}, we can step.
instead use diffset to record just two TIDs, indicating the
difference between {I1}and {I1,I2}. Experiments show that Produce the Final Output: The MapReduce system
in certain situations, such as when the data set contains collects all the Reduce output and sorts it by K2 to
many dense and long patterns, this technique can produce the final outcome.
substantially reduce the total cost of vertical format
mining of frequent itemsets. These five steps can be logically thought of as

Mapreduce: MapReduce allows for distributed processing previous step is completed – although in practice they
of the map and reduction operations. Provided that each can be interleaved as long as the final result is not
mapping operation is independent of the others, all maps affected. In many situations, the input data might already
can be performed in parallel – though in practice this is be distributed ("sharded") among many different servers,
limited by the number of independent data sources and/or in which case step 1 could sometimes be greatly simplified
the number of CPUs near each source [8]. Similarly, a set by assigning Map servers that would process the locally
of 'reducers' can perform the reduction phase, provided present input data. Similarly, step 3 could sometimes be
that all outputs of the map operation that share the same sped up by assigning Reduce processors that are as close
key are presented to the same reducer at the same time, or as possible to the Map-generated data they need to
that the reduction function is associative. While this process.
process can often appear inefficient compared to
algorithms that are more sequential (because multiple Proposed System: Vertical _ Apriori Mapreduce takes
rather than one instance of the reduction process must be advantages from Apriori, Vertical frequent mining and

running in sequence – each step starts only after the

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 69-73, 2016

72

Mapreduce to minimize their drawbacks in order to Algorithm 2: Initial Reduce
efficiency discover frequent item-sets from large datasets
[6]. Vertical-Apriori mapreduce employs the vertical Algorithmj 1 and 2 showed the fundamental of the
frequent pattern mining to avoid the multiple scanning of Mapreduce algorithm for initial scan.
entire dataset.

Fig. 1: Process of VARM supportthen output(k,k.value)
 end

It also applies Mapreduce program paradigm on a end
single node in order to process large dataset in an end
efficient way. Apriori cooperates with vertical frequent
patterns to maintain the frequent 1- itemset TID set for Algorithm 4: Main Reduce Process
minimizing memory usage. The above Figure 1 illustrated
the process of Vertical – Apriori Mapreduce. Data: Key-pairs KP(Key,Value-list)

Data: DataSet D foreach Key k in KP do
Map(Key,Value-list) foreach k(i + 1) in KP do
foreach Record ri in D do new keys +=join(ki,k(i + 1))

foreach Item I in ri do end
output(I,1) end

end
end Algorithm 5: NextCandidate Process

Algorithm 1: Initial Map Data: Key-pairs KP(Key,Value-list)

Data: Key-pairs KP(Key,Value-list) Inital Scan
Reduce(Key,Value) Candidate = NextCandidate(Reduce(Map(Dataset D)))
foreach Key k in KP do while !candidate.isEmpty do

foreach value in ks value list do Candidate = NextCandidate(Reduce(Map(Dataset
k.value = k’s size of value list D)))
if k.value = minimum supportthen end

output(k,k.value)
end Output File: Algorithm 3,4,5 and 6 demonstrated the

end entire Vertical-Apriori Mapreduce algorithm. Use above
end Table1as an example,our minimum support is 50%, so after

Data: Candidate Itemsets C
Map(Key,Value-list)
foreach Candidate c in C do

foreach Item i in c do
c.value-list += intersection(i.TIDSet)

end
end

Algorithm 3: Main Map Process

Data: Key-pairs KP(Key,Value-list)
Reduce(Key,Value)
foreach Key k in KP do

foreach value in ks value list do
k.value = k’s size of value list

if k.value-list.size = minimum

NextCandidate(new keys)

Main()

Middle-East J. Sci. Res., 24 (Recent Innovations in Engineering, Technology, Management & Applications): 69-73, 2016

73

initial scan, the frequent 1-itemset and its TID would be CONCLUSION
Then, the nextCandidate will take these keys as input to
generate next candidate. In this paper an Apriori effective Mapreduce

Experiments: In our experiments, this Vertical-Apriori repository dataset and self –generated datasets. Given
Mapreduce algorithm is implemented in Java and all evaluation results demonstrated AMR algorithm is
experiments are running on the Windows platform with capable to process large dataset in an efficient manner,
core i5-2520M and 4GB RAM.Datasets used for compared with OPUS Miner and Apriori Mapreduce.
experiments including datasets from public repository Vertical-Apriori Mapreduce is more efficient. This
(frequent itemset dataset repository) and self-generated proposed algorithm adopted the advantages from Apriori,
datasets with different number of records and different Vertical frequent pattern mining and Mapreduce to
number of attributes. In Experiment, we compared the minimize the demerits enables a single node to process
Vertical-AprioriMapreduce with Apriori Map reduce in a large dataset in an efficient manner.
distributed system using dataset from Frequent Itemset
dataset repository T10I1D100K. The results are as shown REFERENCES
in the Figures 4 and 5. Comparing with results, our results
are much more efficient. With the increased minimum 1. H. Inc., Hadoop, Inc., Hadoop.
support, the performance on this dataset is rather stable, 2. Dean, J. and S. Ghemawat, 2010. "Mapreduce: a
ranging from 0.53 seconds to 0.56 seconds. Apriori Map flexible data processing tool", Communcat ions of the
reduce takes longer time to process this dataset, its run ACM, 53(1): 72-77.
time decreased as when minimum support increased [9]. 3. Mueller, A., 1998. "Fast sequential and parallel

Fig. Result of VAMR T10I4100K 8. Zaki, M.J., 1999. "Parallel and distributed Association

Fig. Result of Apriori Mapreduce of T1014100K

algorithm and evaluated its performance using public

algorithms for association rule mining: A
Comparision,".

4. Frequent Itemset Dataset Repository, 2013.
5. Pasquier, N., Y. Bastide, R. Taouil and L. Lakhal,

1999. "Efficient mining of association rules using
closed itemset lattices," Information Systems,
24(1): 25-46.

6. Zaki, M.J. and C.J. Hsiao, 2002. "Charm: An Efficient
algorithm for closed itemset mining," in SDM, SIAM,
2: 457-473.

7. Han, J., J. Pei and Y. Yin, "Mining frequent patterns
without candidate generation," in ACM SIGMOD
Record, 29(2). ACM.

mining: A survey," IEEE Concurrency, 7(4): 14-25.
9. Agrawal, R., H. Mannila, R. Srikant, H. Toivonen,

A.I. Verkamo et al., 1999. "Fast discovery of
association rules," Advances in Knowledge
Discovery and Data Mining, 12(1): 307-328.

