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Abstract: The optimum wavelet is deployed in true color composite, false color composite (Near Infrared
Composite) and Shortwave Infrared Composite of Landsat multispectral band image compression. Seven
different kinds of wavelet families with various filter order are examined and optimum wavelets are identified
from each wavelet family. The optimum decomposition level is determined by deploying with the identified
optimum wavelets. The important properties of wavelets in compression and the image quality degradation
during wavelet compression and decompression are discussed. The optimum wavelets and decomposition level
are identified by reconstructed image quality and classification accuracy of reconstructed image. The
reconstructed image quality is measured by both objective and subjective measures. The objective measures
are peak signal to noise ratio (PSNR), compression ratio (CR), mean structural similarity index (MSSIM) and
subjectively using perceived image quality. The classification accuracy is measured by Kappa coefficient. The
simulation results provide good reference for applications developers, to choose optimum wavelet and
decomposition level for their applications.
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INTRODUCTION (DWT) are used in real time applications. The DCT is used

Landsat satellites have been providing multispectral These standards usually do not provide satisfactory
images of the Earth continuously since the early 1970's. results for multispectral image [4]. In DCT based
The applications of Landsat imagery are land and water compression, the input image is subdivided  into  8X8
management, global change research, oil and mineral sub-image and then DCT is applied. The transform itself
exploration, agricultural yield forecasting, pollution does not give compression. The quantization of
monitoring, land surface change detection, and transformed coefficients will reduce the number of
cartographic mapping. Multispectral images typically elements by making near-zero coefficients into zero.
possess a high degree of spatial correlation [1]. The basic Further compression is obtained by source encoding. The
attribute for compression  is  correlated/redundant  data block-based compression is  the  fundamental  limitation
in  an  image. Compression is achieved by removing one of DCT based compression. It produces blocking artifacts
or more of three basic data redundancies: Spatial in reconstructed image. The rate (bit rate or compression
Redundancy, Spectral redundancy and Psycho-visual ratio) - distortion (reconstructed image quality)
redundancy [2]. As a consequence, image compression performance is depending upon size of sub image and
can significantly reduce multispectral data volumes to frequency content of an image.
more manageable size for storage and communication. In past decades, much of the research activities in

In the past two decades, various algorithms have transform coding are focused on DWT. DWT has gained
been proposed for image compression. Most of them rely popularity [5-14], showing in this field the same
on transform coding because of its simplicity, better interesting performance exhibited in other contexts.
results and ease to implement. Among, discrete cosine Wavelet becomes standard tool for image compression
transforms (DCT) [3] and discrete wavelet transform applications,  because  of   its   data   reduction  capability.

in standard for compression of still images (e.g., JPEG).
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Unlike DCT, DWT is  applied  directly  to  the  whole Finally using observations of rate-distortion and data
image and compression is achieved in transform  itself. analysis performance, an optimum wavelet with
The research activities have been developed on analysis decomposition level is determined.
of wavelets for standard, medical, natural and artificial The organization of this paper is as follows. Section
images [15-20]. These papers present in rate-distortion II focuses on some important properties of wavelets and
perspective alone and fail to justify in information their usefulness in image compression. Section III
preservation perspective through analysis or presents performance measures of reconstructed image
classification process after compression. and compression method. The proposed methodology

The performance of different wavelets namely, which is based on wavelet transform is presented in
Daubechies, Coiflet, Symlet, biorthogonal, reverse section IV. Section V provides simulation results and
biorthogonal and Discrete Meyer are analyzed with discussion of the proposed method and existing method.
decomposition level 3 for multispectral images [21, 22]. Finally conclusion and future work discussed in section
The simulation results obtained using Landsat-5 VI.
multispectral image of forest and agricultural area and
concluded that, the discrete Meyer wavelet produces Wavelet Transform: A wavelet function is a small wave,
better compression performance. Here they present both which must be oscillatory in some way to discriminate
rate-distortion and information preservation perspectives. between different frequencies. Wavelets are defined by
They do not consider about inter band redundancy of the wavelet function  (t) (i.e. the mother wavelet) and
multispectral images which is one of the key factor for scaling function  (t) (also called father wavelet) in the
multispectral image compression. Hence their justification time domain. As shown in Table I. orthonormality,
on wavelet analysis is not optimum for multispectral vanishing order, regularity (smoothness) and symmetry
images. are the desirable properties of wavelets which are

To obtain optimum wavelet for multispectral image important for image compression [23].
compression, principle component analysis (PCA) is used Wavelets with filters are associated with multi-
for spectral decorrelation. Spectral decorrelation  via  PCA resolution orthogonal or biorthogonal analyses; discrete
results in rate distortion performance superior to that of transform and fast calculations using the Mallat algorithm
spectral DWT [13]. In the proposed work, seven wavelets are then possible [23]. Orthogonal wavelets preserve
are selected depending upon their properties, which are energy in the transform domain. The orthogonal property
suitable for spatial decorrelation. The seven selected of wavelet that the MSE introduced by thresholding or
wavelets are investigated with 3 different band (321,432) quantization of transform coefficients is equal to MSE in
and (742) combinations of Landsat-7 multispectral images. the reconstructed image. Next the vanishing order is one
This work has two primary objectives. First, investigate of the important property of wavelet for image
the impact of wavelets and its decomposition  level to compression i, e it is responsible for compaction property
rate-distortion performance. Second, performance of this of wavelets. Non smooth wavelet basis function
proposed  work  in  terms  of  information  preservation, introduces artificial discontinuities in quantization. This
i.e., in terms of the  usefulness  of  the  reconstructed reflects that, the artifacts in reconstructed image. The
image in analysis,  such   as  detection  and  classification. classification of wavelet with filters listed in Table II.

Table I: desirable PROPERTIES OF Wavelets and their impact in image compression
S.No Property Uses
1 Orthogonal Energy preservation
2 Number of zero moments of  or  (Vanishing order) Compact support
3 Regularity (Degree of smoothness) Reduce artifacts in reconstructed image.
4 Symmetry Avoid dephasing

Table II: Classification of Wavelets with Filters
Wavelet with filters

Wavelets with compact support With non compact support
---------------------------------------------------------------------------------------------------------------------- --------------------------------------
Orthogonal Bi-orthogonal Orthogonal
Daubechies (dB),  Haar (haar), Symlets Biorthogonal (Bior), reverse Discrete approximation of the
(sym), Coiflets (coif) biorthogonal (rbio)  Meyer (Dmey)
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Fig. 1: a First level DWT decomposition and b) Second level DWT decomposition

The DWT uses multi resolution filter banks and measures. The objective measures are based on distortion
special wavelet filters for the analysis and reconstruction measures. The reconstructed error is one of the standard
of signals. Images are analyzed and synthesized by 2D objective distortion measures. The reconstructed error e(x,
filter banks. In images, the low frequencies, extracted by y) is the difference between the input image is represented
high scale wavelet functions and the high frequencies by as f(x, y) and reconstructed image is f'(x, y). 
low scale wavelet functions. The low-pass subband gives
an approximation of the original image; the other bands E(x, y) =f(x, y) - f'(x, y) x and y=1to N (3)
contain detail information. The filter bank decomposition
structure for DWT is as shown in Figure 1. The Figure 1.a. where NXN is the size of the image MSE refers to the
represents the first level decomposition and Figure.1.b. average value of the square of the error between the
Represents the 2nd level decomposition of an input original image and the reconstruction image.
image.

Let f(x, y)  Z, 1  x&y N is an image with size N ×
N, and the single level decomposition of an input image (4)
using wavelet transform is

(1) Peak Signal to Noise Ratio (PSNR): Peak Signal to Noise
where Ratio is derived from MSE and is given by 
LL  - is the approximation of an input image.1

LH  - is the horizontal detailed component of an input1

image. (6)
HL  - is the vertical detailed component of an input image.1

HH - is the diagonal detailed component of an input1

image. Though PSNR is the most widely used objective
And subscript represents decomposition level. image quality metric, its values do not perfectly correlate

With the compression ratio of 2. behavior of the human visual system.
Here, the transform itself performs compression. The
compression ratio increased by further decomposition of Mean Structural Similarity Index Metric (MSSIM): The
approximated LL1 (m, n) subimage. The second level Structural Similarity Index Metric (SSIM) is a method for
decomposition of LL is given by measuring the similarity between two images. SSIM is

to-Noise Ratio (PSNR) and Mean Squared Error (MSE),
where (2) which have proven to be inconsistent with human eye

PERFORMANCE MEASURES
Reconstructed Image Quality Measures
Mean Square Error (MSE): The reconstructed image (7)
quality can be justified by objective and subjective

(5)

with a perceived visual quality due to the non-linear

used to improve on traditional measures like Peak Signal-

perception:
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µ = The average of x and µ the average of y The spectral correlation of gmb(x, y) is removed andx y

= The variance of x and  the variance of y difference between bands are enhanced by spectral
= The covariance of x and y decorrelation stretching operation using ENVI tool.xy

c = (k L) , c = (k L)  two variables to stabilize the Here enhancement by stretching does not introduce1 1 2 2
2 2

division with weak denominator redundancy in the enhanced decorrelated image
L = The dynamic range of the pixel-values (typically gmb.SDS(x,y).

this is 2 -1, b number of bits/pixel) From ENVI package, Export multispectral image gmb,b

k = 0.01 and k = 0.03 by default SDS(x, y) as an external image file.1 2

Mean Structural Similarity Index Metric MSSIM is the extract each band separately as gb (x, y).
better indication of image qualtiy and is defined as the By the following steps, the optimum wavelets are
mean value of SSIM. The MSSIM is determined by the chosen by using rate-distortion performance of the
following equation. compression of individual band image.

y) is 
(8)

Classification Measure -Kappa Coefficient: When two
binary variables are the measure of the same thing, where
Cohen's Kappa or Kappa Coefficient can be used as a W= wavelet transform
measure of agreement between the two variables. If one
variable is assumed to be the correct measure then Kappa g  is the approximation of an input image
coefficient will be the measure of correctness of the g  is the detailed component in horizontal direction.
second one. g  is the detailed component in vertical direction.

(9) Determine adaptive threshold value of g and

where Pr (a) is the relative observed agreement among
variables and Pr (e) is the hypothetical probability of (12)
chance agreement, using the observed data to calculate
the probabilities of each variable randomly saying each (13)
category. If the variables are in complete agreement then
K = 1. If there is no agreement among the variables then Encoding of thresholded values is performed
K = 0. using Set Partitioning in Hierarchical Trees

Image Compression Using Wavelet Transform: The coefficients.
algorithm steps of proposed methodology are as follows:

Read individual multispectral band imagery which are (14)
in grey level values f (x, y), and size of an image isi

7550 × 7581. Compression ratio (CR) is calculated by using
Combine an individual band images into single the ratio of number of bytes required (Mi) to
multispectral imagery using layer stacking in ENVI represent an input image and number of bytes
tool required to represent SPIHT encoding stream

(10)

where

SPIHT decoding of encoded bit stream is
performed.

From MATLAB, import an image gmb, SDS(x, y) and

Wavelet decomposition of an input image gb (x,

(11)

a

h

v

g  is the detailed component in diagonal direction.d

a

performed adaptive thresholding of
approximated wavelet coefficients.

(SPIHT) technique, which is suitable for wavelet

(Mo).

(15)
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(16) infrared 742) is compressed using seven different

The original image is reconstructed by applying wavelet with N (dmeyN)= 1, 2, 4, 5, 6, 8, 10, 15, 16, 32, 45,
inverse discrete wavelet transform to decoded or biorthogonal wavelet with Nr,Nd (biorNr.Nd) = (1,1), (1,3),
decompressed Image. (1,5), (2,2), (2,4), (2,6), (2,8), (3,1), (3,3), (3,5), (3,7), (3,9),

(17) 3, 4 and 5, daubechies wavelet with N (dbN)=1, 2, 4, 5, 6,

The various objective measures like Peak Signal 1,2,3,5,8,13,18,23,28 and 32 and reverse biorthogonal
to Noise Ratio (PSNR), Structural Similarity Index wavelet with Nr,Nd (rbioNr.Nd) = (1,1), (1,3), (1,5), (2,2),
(MSSIM) are calculated using input and (2,4), (2,6), (2,8), (3,1), (3,3), (3,5), (3,7), (3,9), (4,4), (5,5), and
reconstructed images. (6,8). The optimum wavelet with filter order is chosen from

From rate-distortion performance, optimum wavelets each family using PSNR, CR and MSSIM values.
are chosen.
Optimum wavelets with various decomposition level Analysis of Wavelet Families: Table III, IV and V show
(DL=2 to 10) are deployed and few number of the compression ratio, PSNR and MSSIM on a per band
decomposition levels are chosen from rate-distortion basis for three composite bands using seven different
performance. wavelet families with single decomposition level. There is
The reconstructed images using optimum wavelets tradeoff between compression ratio and PSNR. In a few
with decomposition level are export to ENVI tool. steps, the choice of an optimum wavelet is determined for
Read an individual reconstructed band of each multispectral image compression. For each wavelet family,
composite image and combine them with 321, 432 and the optimal filter order is determined.
742 respective composite bands. Among seven wavelet families, the Haar and dmey
The unsupervised classification technique like k- chosen for next step analysis, because they don't have
means algorithm is applied to the composite bands filter order variation. In biorthogonal wavelet family, for all
with 2 numbers of classes (water body and non water the three composite bands 321,432 and 742, the PSNR
body). values are low comparing other wavelet families. Because
With the help of post classification tool, the biorthogonal wavelet family does not possess orthogonal
classification accuracy is determined by Kappa property except bior2.2, which possesses near orthogonal
coefficient. property. Though bior3.1 produces high compression
Application     specific  optimum      wavelet   with ratio, bior2.2 is chosen by considering reconstructed
decomposition level is determined using rate - image quality (PSNR), complexity in (bior3.1) higher filter
distortion   performance   and  effective order.
reconstruction of image for analysis and further In coiflet wavelet family, all wavelets produce
classification. approximately same results (CR ~40 and PSNR~ 30dB).

Simulation Results and Discussions: The simulation filter order. Among Daubechies family, Db1 produces high
results are obtained for Landsat ETM+ image with 8 bit CR and PSNR. The regularity (responsible for image
radiometric resolution representing cud lore district, Tamil quality) and vanishing order (responsible for compression
nadu (path/row : 142/52). Five equal resolution bands ratio) are decayed with increasing filter order of Db family,
(band 1,2,3,4 and 7) are used to produce three so that the artifacts introduced in reconstructed image
multispectral composite bands, 321, 432 and 742. An area and compression ratio is decreased. Hence the PSNR
of 512x512 pixels is taken as a test image which exhibits reduced with increasing filter order. Here Db1 is chosen
both water and non -water body area. The simulation by considering PSNR and complexity in higher filter order.
results present to assess the performance of the proposed As Db family, among in symlet family, sym1 is chosen
technique, also compared with reference techniques given which produces high CR and PSNR. For higher filter order
in the literature [17, 18, 22]. (sym33 to sym45), the simulation does not executed which

The spectral decorrelation stretching method is used requires large volume of memory. For reverse
to eliminate inter band correlation and also highlight the biorthogonal wavelet family, the compression ratio
difference between inter bands. The individual band from decreases with increasing filter order up to rbio3.1, after
3, 2 and 1 (true color composite 321), band 4,3 and 2(false that CR is increased. The rbio1.1 produces optimum CR
color composite) and band 7,4 and 2 (from short wave and PSNR. 

wavelets of various filter order N: Haar, discrete meyer

(4,4), (5,5), and (6,8), coiflet wavelet with N (coifN) = 1, 2,

8, 10, 15, 16, 32 and 45 symlet wavelet with N (symN) =

Hence coif1 is chosen by considering complexity in higher
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Table III: Rate - Distortion Performance of True Color Composite Band Compression Using Various Wavelet Families

Band3 Band2 Band1

WaveletFilter -------------------------------------------------- -------------------------------------------------- --------------------------------------------------

S.No Waveletfamily order CR PSNR MSSIM CR PSNR MSSIM CR PSNR MSSIM

1 Haar 41.3387 31.5639 0.9708 39.7465 31.5845 0.9716 40.1554 30.9497 0.9707

2 dmey 40.5239 31.0983 0.9650 39.7579 31.4496 0.9691 40.7191 30.4246 0.9663

3 Biorthogonal bior1.1 41.3387 31.5639 0.9708 39.7465 31.5845 0.9716 40.1554 30.9497 0.9707

bior1.3 40.4682 31.3655 0.9695 39.3527 31.4854 0.9709 40.4528 30.5180 0.9679

bior1.5 40.7060 30.9132 0.9664 39.8695 31.0418 0.9678 40.6132 30.1769 0.9655

bior2.2 43.0293 29.9439 0.9607 42.2552 30.0093 0.9591 42.9170 29.2629 0.9594

bior2.4 42.9157 30.0165 0.9610 42.3913 30.1083 0.9598 42.9386 29.3868 0.9603

bior2.6 42.9830 29.9131 0.9600 42.4509 30.0652 0.9594 43.1575 29.2476 0.9591

bior2.8 42.9627 29.8211 0.9591 42.6090 29.9472 0.9583 43.1678 29.1636 0.9583

bior3.1 44.7353 26.0266 0.9173 44.1562 25.9066 0.9033 44.4132 25.3905 0.9150

bior3.3 44.2167 27.6384 0.9388 44.0639 27.5312 0.9299 44.4519 26.9370 0.9361

bior3.5 44.1931 27.9508 0.9422 44.0488 27.8959 0.9347 44.4015 27.2855 0.9399

bior3.7 44.1553 28.0439 0.9430 44.0302 28.0080 0.9361 44.4101 27.3768 0.9408

bior3.9 44.2179 28.0298 0.9427 44.0110 28.0442 0.9365 44.4874 27.3771 0.9407

bior4.4 40.8968 31.2198 0.9687 40.1361 31.3642 0.9695 40.8750 30.5511 0.9683

bior5.5 38.2290 31.8047 0.9719 36.9959 32.1227 0.9741 37.9809 31.1596 0.9720

bior6.8 40.9765 31.1613 0.9680 40.5073 31.3020 0.9689 41.3679 30.3866 0.9671

4 Coiflet coif1 40.5685 31.3663 0.9700 39.5751 31.6380 0.9714 40.2680 30.7506 0.9697

coif2 40.6688 31.3233 0.9692 39.7587 31.6172 0.9711 40.6673 30.6716 0.9691

coif3 40.6146 31.2991 0.9686 39.7935 31.6005 0.9709 40.7430 30.6153 0.9685

coif4 40.5662 31.2888 0.9683 39.8038 31.5783 0.9707 40.8156 30.5581 0.9680

coif5 40.6152 31.2399 0.9676 39.8018 31.5648 0.9705 40.9263 30.4947 0.9675

5 Daubchies db1 41.3387 31.5639 0.9708 39.7465 31.5845 0.9716 40.1554 30.9497 0.9707

db2 40.6032 31.4192 0.9700 39.4537 31.6814 0.9716 40.3004 30.7054 0.9694

db4 40.9006 31.2711 0.9682 40.0300 31.5630 0.9704 40.9438 30.6060 0.9683

db5 40.7004 31.2293 0.9677 39.7822 31.5852 0.9704 40.7149 30.6132 0.9680

db6 40.5635 31.1541 0.9664 39.8266 31.4968 0.9697 40.7833 30.4583 0.9668

db8 40.3772 31.1138 0.9654 39.5466 31.4288 0.9689 40.5803 30.3543 0.9656

db10 40.3418 31.0124 0.9642 39.7077 31.3433 0.9681 40.7095 30.2633 0.9649

db15 40.1996 30.9212 0.9622 39.4527 31.3180 0.9678 40.5566 30.1732 0.9640

db16 40.5063 30.7746 0.9611 39.6059 31.2263 0.9671 40.7528 30.0321 0.9628

db32 40.5310 30.4660 0.9567 39.3188 31.0914 0.9664 40.6221 29.8234 0.9614

db45 40.4039 30.4523 0.9557 39.4886 30.9784 0.9657 40.5153 29.7585 0.9609

6 Symlet Sym1 41.3387 31.5639 0.9708 39.7465 31.5845 0.9716 40.1554 30.9497 0.9707

sym2 40.6032 31.4192 0.9700 39.4537 31.6814 0.9716 40.3004 30.7054 0.9694

sym3 40.6710 31.4014 0.9695 39.8620 31.5793 0.9706 40.6458 30.6766 0.9689

sym5 40.6143 31.3172 0.9689 39.7940 31.5565 0.9705 40.6912 30.6235 0.9686

sym8 40.4910 31.3119 0.9684 39.7255 31.5699 0.9705 40.5919 30.6151 0.9683

sym13 40.4412 31.2482 0.9674 39.7113 31.5358 0.9700 40.6873 30.4975 0.9673

sym18 40.4517 31.2202 0.9666 39.7630 31.4958 0.9696 40.7559 30.4447 0.9668

sym23 40.7329 31.1079 0.9651 39.8915 31.4860 0.9693 40.8131 30.4075 0.9659

sym28 40.4962 31.1565 0.9657 39.8176 31.4857 0.9693 40.6055 30.4956 0.9668

sym32 40.4032 31.1565 0.9651 39.7085 31.4763 0.9692 40.7593 30.3914 0.9661

7 Reverse biorthogonal rbio1.1 41.3387 31.5639 0.9708 39.7465 31.5845 0.9716 40.1554 30.9497 0.9707

rbio1.3 40.9215 31.4141 0.9704 39.2671 31.6001 0.9715 40.1997 30.6895 0.9696

rbio1.5 41.0137 31.0794 0.9679 39.4996 31.2406 0.9689 40.1775 30.4206 0.9679

rbio2.2 37.0782 31.6241 0.9715 35.5444 32.0854 0.9743 36.3222 30.9794 0.9710

rbio2.4 37.5444 31.8194 0.9724 36.0322 32.1386 0.9745 37.0821 31.0884 0.9719

rbio2.6 37.8092 31.6747 0.9713 35.8546 32.1840 0.9747 37.1001 31.0452 0.9715

rbio2.8 37.4688 31.7407 0.9714 35.8984 32.0905 0.9741 36.9734 31.0149 0.9713

rbio3.1 32.5319 29.5324 0.9561 30.6500 30.2476 0.9622 32.0925 28.7091 0.9536

rbio3.3 34.4024 30.6884 0.9657 32.5230 31.3943 0.9702 33.9783 29.9625 0.9648

rbio3.5 34.6116 31.0140 0.9677 32.8405 31.6274 0.9716 34.1671 30.2839 0.9671

rbio3.7 34.6109 31.1056 0.9677 32.8178 31.7422 0.9722 34.1829 30.3870 0.9677

rbio3.9 34.5874 31.1140 0.9678 32.7618 31.7805 0.9724 34.2577 30.3921 0.9677

rbio4.4 40.3491 31.1496 0.9678 39.5455 31.4189 0.9698 40.3095 30.4641 0.9675

rbio5.5 42.8429 30.0078 0.9597 42.2322 30.2388 0.9605 43.1475 29.2662 0.9585

rbio6.8 39.8972 31.4219 0.9692 39.2071 31.6796 0.9714 40.1286 30.6639 0.9687
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Table IV: Rate - Distortion Performance of False Color Composite Band Compression Using Various Wavelet Families

Band4 Band3 Band2

WaveletFilter -------------------------------------------------- -------------------------------------------------- --------------------------------------------------

S.No Waveletfamily order CR PSNR MSSIM CR PSNR MSSIM CR PSNR MSSIM

1 Haar 42.2115 39.9209 0.9641 40.8134 30.1888 0.9672 39.8849 31.8728 0.9719

2 dmey 40.8769 40.0467 0.9648 41.0683 29.8784 0.9648 40.2882 31.5965 0.9695

3 Biorthogonal bior1.1 42.2115 39.9209 0.9641 40.8134 30.1888 0.9672 39.8849 31.8728 0.9719

bior1.3 41.0278 39.8773 0.9638 40.6973 29.8334 0.9646 40.0438 31.5393 0.9698

bior1.5 41.0385 39.5325 0.9612 40.9405 29.4830 0.9620 40.1017 31.2610 0.9679

bior2.2 43.5603 38.8902 0.9608 43.2471 28.6553 0.9568 42.7292 30.2613 0.9608

bior2.4 43.5033 38.8614 0.9603 43.2851 28.7510 0.9573 42.6942 30.4130 0.9618

bior2.6 43.2973 38.8490 0.9601 43.4466 28.6453 0.9562 42.8858 30.3029 0.9608

bior2.8 43.5043 38.6762 0.9589 43.4903 28.5617 0.9555 42.9192 30.2127 0.9601

bior3.1 45.8054 35.2527 0.9370 44.8977 24.9360 0.9138 44.3133 26.3652 0.9142

bior3.3 45.2710 36.7416 0.9492 44.8652 26.4080 0.9342 44.3058 27.9289 0.9365

bior3.5 45.0871 37.0544 0.9513 44.8691 26.7415 0.9379 44.3200 28.2701 0.9406

bior3.7 45.0570 37.1338 0.9515 44.8644 26.8592 0.9393 44.3233 28.3704 0.9416

bior3.9 45.0534 37.1543 0.9515 44.9003 26.8737 0.9394 44.3062 28.3935 0.9419

bior4.4 41.3266 40.0324 0.9665 41.2504 29.9201 0.9659 40.5322 31.6311 0.9704

bior5.5 39.3003 40.2780 0.9674 38.5450 30.4764 0.9696 37.6965 32.2686 0.9742

bior6.8 41.6100 39.8662 0.9653 41.6434 29.8132 0.9650 41.0027 31.5131 0.9695

4 Coiflet coif1 40.5437 40.2117 0.9666 40.6323 29.9936 0.9660 40.0393 31.8382 0.9716

coif2 40.9092 40.0874 0.9660 40.9804 30.0318 0.9664 40.2695 31.8134 0.9714

coif3 40.8158 40.1223 0.9663 41.1745 29.9671 0.9659 40.3215 31.7884 0.9712

coif4 41.0754 39.9911 0.9653 41.1249 29.9663 0.9658 40.3523 31.7497 0.9708

coif5 40.9246 40.0447 0.9656 41.2308 29.9124 0.9653 40.3536 31.7297 0.9707

5 Daubchies db1 42.2115 39.9209 0.9641 40.8134 30.1888 0.9672 39.8849 31.8728 0.9719

db2 40.8310 40.1214 0.9660 40.4363 30.0719 0.9666 40.0676 31.8051 0.9715

db4 41.1391 40.0267 0.9653 41.0183 30.0159 0.9662 40.4455 31.7675 0.9711

db5 40.9246 39.9562 0.9647 41.0939 29.9089 0.9652 40.4874 31.6760 0.9703

db6 40.9389 39.8204 0.9637 41.0556 29.8401 0.9647 40.3939 31.6250 0.9697

db8 40.9721 39.6523 0.9622 40.9728 29.7465 0.9639 40.1282 31.5456 0.9690

db10 40.8690 39.5907 0.9614 41.0192 29.6604 0.9629 40.2937 31.4565 0.9684

db15 40.7428 39.4472 0.9599 41.0305 29.5407 0.9620 40.2641 31.3388 0.9673

db16 40.8886 39.3258 0.9586 41.0020 29.5096 0.9618 40.1724 31.3521 0.9674

db32 40.9893 39.0307 0.9553 41.1778 29.2035 0.9597 40.1793 31.1187 0.9660

db45 41.1400 38.9460 0.9542 41.1133 29.1970 0.9597 40.3156 30.9784 0.9652

6 Symlet Sym1 42.2115 39.9209 0.9641 40.8134 30.1888 0.9672 39.8849 31.8728 0.9719

sym2 40.8310 40.1214 0.9660 40.4363 30.0719 0.9666 40.0676 31.8051 0.9715

sym3 41.2565 40.0116 0.9656 41.0064 30.0015 0.9660 40.2590 31.8028 0.9713

sym5 41.0155 39.9791 0.9652 40.9101 29.9785 0.9662 40.2467 31.7405 0.9709

sym8 40.8471 40.0190 0.9655 40.9801 29.9843 0.9660 40.3862 31.6985 0.9705

sym13 41.0542 39.8751 0.9640 40.8934 29.9354 0.9654 40.3539 31.6517 0.9700

sym18 40.8697 39.9388 0.9647 40.9837 29.9365 0.9653 40.4141 31.6192 0.9697

sym23 40.8995 39.8621 0.9634 41.1958 29.8590 0.9645 40.5223 31.5912 0.9694

sym28 41.0855 39.8327 0.9633 41.0821 29.8707 0.9646 40.4182 31.5821 0.9694

sym32 40.8446 39.9272 0.9640 40.9532 29.9166 0.9649 40.3866 31.5621 0.9692

7 Reverse biorthogonal rbio1.1 42.2115 39.9209 0.9641 40.8134 30.1888 0.9672 39.8849 31.8728 0.9719

rbio1.3 41.2415 40.1975 0.9675 40.6785 30.0761 0.9669 39.7989 31.7546 0.9715

rbio1.5 41.5902 39.8207 0.9649 40.7171 29.7936 0.9649 39.7663 31.5146 0.9699

rbio2.2 38.5903 39.8178 0.9627 36.6929 30.2061 0.9669 36.1566 32.1356 0.9735

rbio2.4 39.4338 39.8822 0.9639 37.5348 30.3330 0.9684 36.6354 32.2801 0.9744

rbio2.6 39.1312 40.0296 0.9650 37.6413 30.3021 0.9682 36.6492 32.2511 0.9742

rbio2.8 39.4987 39.8117 0.9637 37.5369 30.2860 0.9681 36.5365 32.2184 0.9739

rbio3.1 36.4790 36.7634 0.9321 32.7564 27.7031 0.9451 31.4320 29.9916 0.9585

rbio3.3 37.8345 38.2363 0.9518 34.3968 29.1553 0.9605 33.5400 31.1573 0.9679

rbio3.5 38.0272 38.6315 0.9557 34.8053 29.4147 0.9628 33.7216 31.5167 0.9703

rbio3.7 38.0279 38.7718 0.9568 34.8718 29.5360 0.9636 33.7503 31.6129 0.9708

rbio3.9 38.0780 38.7892 0.9571 34.9057 29.5658 0.9638 33.7455 31.6219 0.9708

rbio4.4 40.8861 39.7044 0.9626 40.5325 29.7984 0.9646 39.9471 31.6266 0.9701

rbio5.5 42.9680 38.7306 0.9571 43.3611 28.6404 0.9556 42.7078 30.4095 0.9613

rbio6.8 40.6178 39.9436 0.9644 40.3190 30.0730 0.9665 39.7498 31.8323 0.9714
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Table V: Rate - Distortion Performance of Short Wave Infrared Band Compression Using Various Wavelet Families

Band7 Band4 Band2

WaveletFilter -------------------------------------------------- -------------------------------------------------- --------------------------------------------------

S.No Waveletfamily order CR PSNR MSSIM CR PSNR MSSIM CR PSNR MSSIM

1 Haar 44.1154 37.9380 0.9701 40.9218 39.7109 0.9611 40.5434 34.7550 0.9688

2 dmey 40.4318 37.3537 0.9608 40.6695 39.8209 0.9622 41.3428 34.3261 0.9671

3 Biorthogonal bior1.1 44.1154 37.9380 0.9701 40.9218 39.7109 0.9611 40.5434 34.7550 0.9688

bior1.3 41.6336 37.9057 0.9698 40.4832 39.5726 0.9599 40.9850 34.2634 0.9655

bior1.5 41.8850 37.2562 0.9648 41.1690 39.0464 0.9556 41.4745 33.8018 0.9620

bior2.2 43.6103 36.4504 0.9599 43.0075 38.5417 0.9557 43.4544 33.1715 0.9590

bior2.4 43.2053 36.4223 0.9592 43.2470 38.5046 0.9549 43.6442 33.1865 0.9589

bior2.6 42.9921 36.3565 0.9583 43.1505 38.4942 0.9549 43.6666 33.1326 0.9584

bior2.8 43.1725 36.1434 0.9563 43.3278 38.3585 0.9539 43.8167 33.0073 0.9573

bior3.1 45.5242 32.5259 0.9227 45.0794 34.8770 0.9311 45.0378 29.5111 0.9217

bior3.3 44.8819 33.9246 0.9381 45.1309 36.2872 0.9428 45.0634 30.9801 0.9390

bior3.5 44.6635 34.2205 0.9410 45.0672 36.6261 0.9452 45.1861 31.2620 0.9419

bior3.7 44.5886 34.2850 0.9412 44.9967 36.7323 0.9459 45.1669 31.3582 0.9428

bior3.9 44.5874 34.2730 0.9407 45.0189 36.7365 0.9458 45.2371 31.3482 0.9426

bior4.4 41.0237 37.6213 0.9675 41.2371 39.5997 0.9616 41.6095 34.3291 0.9677

bior5.5 38.5876 38.0141 0.9692 39.2761 39.8461 0.9630 38.9087 34.7742 0.9704

bior6.8 41.0859 37.3975 0.9653 41.4723 39.5293 0.9610 41.9066 34.2291 0.9667

4 Coiflet coif1 40.7859 37.9056 0.9694 40.2954 39.7498 0.9615 40.7536 34.5013 0.9679

coif2 40.7088 37.7056 0.9676 40.9529 39.6559 0.9613 41.2332 34.4579 0.9681

coif3 40.4578 37.6650 0.9668 40.7538 39.7490 0.9620 41.3406 34.4032 0.9677

coif4 40.5515 37.5290 0.9652 41.0004 39.6400 0.9612 41.2416 34.4209 0.9679

coif5 40.4215 37.5211 0.9648 40.7891 39.7317 0.9618 41.4774 34.3256 0.9672

5 Daubchies db1 44.1154 37.9380 0.9701 40.9218 39.7109 0.9611 40.5434 34.7550 0.9688

db2 41.3504 37.8628 0.9689 40.4457 39.6721 0.9607 40.6395 34.4890 0.9677

db4 41.0027 37.4588 0.9652 40.8674 39.6321 0.9608 41.3481 34.4068 0.9676

db5 40.5107 37.3968 0.9637 40.6331 39.6346 0.9607 41.2670 34.3470 0.9670

db6 40.6666 37.1246 0.9613 40.7334 39.4811 0.9593 41.3988 34.2020 0.9661

db8 40.5315 36.9513 0.9588 40.5883 39.4054 0.9585 41.2793 34.1333 0.9655

db10 40.4151 36.7512 0.9560 40.8423 39.2689 0.9580 41.3667 33.9774 0.9644

db15 40.2088 36.5107 0.9524 40.7545 39.1507 0.9566 41.2483 33.8912 0.9641

db16 40.2783 36.4215 0.9509 40.8457 39.0923 0.9560 41.4724 33.8298 0.9635

db32 40.5089 35.7899 0.9418 40.7993 38.9202 0.9543 41.2279 33.6225 0.9622

db45 40.7872 35.5046 0.9377 40.8967 38.8714 0.9538 41.4228 33.4996 0.9615

6 Symlet Sym1 44.1154 37.9380 0.9701 40.9218 39.7109 0.9611 40.5434 34.7550 0.9688

sym2 41.3504 37.8628 0.9689 40.4457 39.6721 0.9607 40.6395 34.4890 0.9677

sym3 40.9981 37.6720 0.9671 40.8870 39.6247 0.9608 41.2847 34.3964 0.9674

sym5 40.7496 37.4903 0.9657 40.7367 39.6559 0.9612 41.3506 34.3582 0.9673

sym8 40.7180 37.3988 0.9645 40.9128 39.6282 0.9609 41.2580 34.3909 0.9677

sym13 40.4102 37.3220 0.9628 40.8756 39.5784 0.9605 41.4137 34.2622 0.9667

sym18 40.5577 37.2135 0.9613 40.8267 39.6263 0.9609 41.4443 34.2526 0.9667

sym23 40.5297 37.1104 0.9591 40.6973 39.5948 0.9603 41.4216 34.2479 0.9664

sym28 40.3735 37.2855 0.9608 40.7188 39.6535 0.9610 41.4320 34.2427 0.9664

sym32 40.4348 37.2586 0.9603 40.6913 39.6811 0.9611 41.4661 34.2364 0.9664

7 Reverse biorthogonal rbio1.1 44.1154 37.9380 0.9701 40.9218 39.7109 0.9611 40.5434 34.7550 0.9688

rbio1.3 42.0757 38.0364 0.9707 40.5208 39.7365 0.9623 40.5685 34.5766 0.9692

rbio1.5 42.4035 37.5450 0.9667 40.5958 39.4813 0.9607 40.7016 34.2671 0.9673

rbio2.2 38.6902 37.9150 0.9681 38.1276 39.3425 0.9573 37.1090 34.4666 0.9671

rbio2.4 39.4234 37.9148 0.9685 38.8229 39.5053 0.9595 38.1727 34.5586 0.9686

rbio2.6 39.2817 37.9175 0.9681 38.7703 39.5723 0.9601 37.9800 34.6355 0.9694

rbio2.8 39.3419 37.7874 0.9670 38.8835 39.4841 0.9595 38.1148 34.5282 0.9686

rbio3.1 36.4809 34.9179 0.9398 36.0297 36.4185 0.9270 33.4941 31.5530 0.9382

rbio3.3 37.3656 36.3057 0.9555 37.3027 37.9826 0.9478 35.4668 33.0970 0.9574

rbio3.5 37.4305 36.6288 0.9579 37.5369 38.3397 0.9516 35.7082 33.4703 0.9609

rbio3.7 37.3918 36.6763 0.9582 37.5381 38.4671 0.9531 35.6854 33.6365 0.9623

rbio3.9 37.3738 36.6556 0.9577 37.5959 38.4792 0.9532 35.6981 33.6660 0.9626

rbio4.4 40.6587 37.4473 0.9653 40.6483 39.3033 0.9579 41.1694 34.0758 0.9651

rbio5.5 42.6520 36.2599 0.9561 42.6781 38.4427 0.9524 43.5468 33.0588 0.9571

rbio6.8 40.0737 37.5912 0.9655 40.5637 39.5734 0.9602 40.7226 34.4121 0.9676
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Fig. 2: Analysis of compression ratio using Coiflet, Daubechies and symlet wavelet family from Table III

Fig. 3: Analysis of PSNR using Coiflet, Daubechies and symlet wavelet family from Table III

For all composite bands, the Coiflet (except coif1), technique are combined with these three wavelets for next
Daubechies (except Db1) and symlet (except Db1) wavelet stage decomposition level analysis. The six wavelets
produce almost same response. Fig. 2 and 3 depict the nameley haar, bior2.2, coif1, dmey, Db2 and rbio1.3 are
compression ratio and PSNR values produced by the analysed with different decomposition level (DL=1 to 10).
families of Coiflet, Daubechies and Symlet for band 3 of From Fig 5a it is observed that, the compression ratio is
true color composite 321. The selected haar wavelet, db1 increased upto DL=3 and it  maintains  constant  value.
from daubechies family, sym1 from symlet family and The PSNR reduced with increasing decomposition level
rbio1.1 from reverse biorthogonal family produce same upto DL=3, it also maintains constant values as shown in
results for all composite bands. Hence haar wavelet is Fig 5.b The detail components are eliminated with
chosen among four different wavelet families. The increasing decomposition level. Hence the PSNR and
analysis of these simulation results reveals that Haar, MSSIM are reduced.
bior2.2 and coif1 are produced better performance than
other wavelets for all composite bands, also these three Comparative Analysis with Existing Technique: The
wavelets are chosen for next step decomposition level optimum wavelet is chosen by kappa coefficient of
analysis. classification measure and output of classified image. The

Analysis of Decomposition Level: The Db2, dmey and wavelets with decomposition level 1,2 and 3 are listed in
rbio1.3 wavelets are proven as optimum wavelet by Table VI which proves that, though Haar wavelet
different existing algorithms. Hence for comparative produces high Kappa coefficient for 3 composite bands
analysis, already chosen wavelets by the proposed with various decomposition level (DL=1,2 & 3).

kappa coefficient of classified image is obtained for six
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Fig. 4: Analysis of Rate - Distortion performance with decomposition level (band 4 of false color composite 432 is
compressed by haar wavelet)

Fig. 5: (a) Input Image (b) Input image compressed by haar (c) bior2.2 and (d) rbio1.3

Table VI: Analysis of Classification Measure - Kappa Coefficient
Decompositionlevel Bandcomposite Haar[10] Dmey[12] db2[11] bior2.2 coif1 rbio1.3[11]
1 Band321 0.9290 0.9262 0.9257 0.9258 0.9261 0.9257

Band432 0.8728 0.8702 0.8682 0.8663 0.8681 0.8698
Band742 0.8891 0.8851 0.8847 0.8847 0.8852 0.8847

2 Band321 0.8066 0.8066 0.8069 0.8074 0.8069 0.8058
Band432 0.869 0.8679 0.8598 0.8568 0.8592 0.8656
Band742 0.8806 0.8795 0.8776 0.8776 0.879 0.8776

3 Band321 0.8025 0.8025 0.8036 0.8039 0.8036 0.8016
Band432 0.866 0.8657 0.8589 0.8578 0.8583 0.8658
Band742 0.8786 0.8782 0.878 0.878 0.8784 0.878

Fig. 5 compares the visual quality of test image decomposition. Compare figure c, in figure b and d, the
compressed by optimal wavelet functions (haar, bior2.2 fine details are lost and region borders are showing peaks
and rbio 1.3) of proposed algorithm with three level of  error.   The    reconstructed   image   from  all composite
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Fig. 6: Classification output of the a) original true color composite (321) multispectral image b) image compressed by
haar (K=0.8298) c) image compressed by bior22 (K=0.8298) d) d) image compressed by rbio1.3 (K=0.8288)

bands is classified by using one of the unsupervised depending upon compression ratio, reconstructed image
techniques; k- means algorithm with two classes namely quality (PSNR & MSSIM), Kappa coefficient and
water body and non water body.  The  classification usefulness of reconstructed image for analysis and
output  for  input  (true  color  composite) image, the classification. From the simulation results, bior2.2 with
image   compressed   with   decomposition   level  3 by decomposition level 3 is chosen as optimum for
Haar  (high  Kappa    coefficient),    bior 2.2  (medium compressing three composite bands namely true color
Kappa     coefficient)         and    rbio1.3       (low   Kappa composite, false color composite and short wave
coefficient) wavelet are as shown in Fig. 6. From the composite band of multispectral images. However, the
classification  output  images,  it   is   cleared  that, even wavelet fails to preserve edge information  in  all
the haar produces high kappa coefficient, the bior 2.2 directions. The future work will focus on image
preserves   detail    information   (waterbody   region    and compression  using  multidirectional  wavelet  transform
its  border)  which  results in better classification to be used for preserving geometric features of
accuracy. Hence bior2.2 with decomposition level 3 is multispectral band imagery in all directions.
chosen as optimum for compressing three composite
bands with high compression ratio, better PSNR and REFERENCES
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