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Abstract: In this paper, a machine learning based Informative Vector Machine (IVM) algorithm for power system
Static Security Assessment (SSA) has been presented. Recently, Machine learning algorithm based
classification has become trendy and been successfully applied to many fields including power system and so
on. The proposed IVM approach classifies the power system operating scenarios into secure and insecure
states  that  validate accurate measure of system security. This methodology can serve as a decision making
tool  in  power  system  operation  and  control  to take preventive and remedial actions if system is insecure.
The proposed SSA-IVM classifier determines the status of the system security within a less time period and
satisfies the demand of low dimensionality of data that supports quick decision in real time. It is a big challenge
in reducing the size of input variables and speed up the computation; a correlation based F- value feature
selection is used for this purpose in this paper. For that reason, there is a need for finding a smaller set of
variables from the larger data set and validating those variables having more discriminatory and useful
information to realise about static security. Furthermore, this paper influences a set of selective parameters such
as real and reactive power generations that strengthen the performance of the proposed classifier. Experimental
results are validated by simulating various scenarios with a standard IEEE-118 Bus system.

Key words: F-value method  Feature selection  Informative Vector Machine  Machine learning  Static
Security Assessment

INTRODUCTION flows and load bus voltage magnitude on the selected

Power system security and reliability have become however, not only in base case condition but also in
challenging issues in the present restructured scenario. stressed/line outage conditions. As a result, an accurate
The problem of monitoring the power flows and bus as well as fast computation of lines flows, identification of
voltages in a power system is very important in overloaded lines and prediction of line overloading in
maintaining system security and fast prediction is different overloaded branches are essential for ensuring
essential for controlling these quantities. As power reliable power system operation. This situation
systems have become more stressed due to increased demanding a fast, reliable security assessment is of
loading and large interconnections, there will be an paramount importance in modern power systems [2].
increase in cases of voltage limit violation and line loading Security assessment can be classified as Static,
limit violation, particularly in contingency conditions like Transient and Dynamic security assessment. Static
line outage, generator outage etc. Under emergency security is one of the main and important aspects of
conditions, power system operator has to take quick power system security assessment. Static security is
decisions without caring much for the optimality of the defined as the ability of the system to reach a state within
operating condition [1]. the specified secure region following any specified

In general, Security assessment (SA) is performed to contingency. The standard approach to the security
find out which line is overloaded and up to which level assessment problem is to perform the static security
the overloading is present along with the load bus voltage analysis at first, then Transient and dynamic security
magnitude. It is necessary to ensure that all the power analyses are planned based on the successive information

network are maintained within the specified limits
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about SSA. The static security analysis evaluates the learning algorithms suffer from exceeding time and
post contingent steady state of the system, neglecting the memory requirements, if the training pattern set is very
transient behaviour and any other time-dependent large. To overcome the draw backs of SVM, Core Vector
variations [3, 4]. On the other hand, the transient and Machine (CVM) and Ball Vector Machine (BVM) have
dynamic security analyses evaluate the time-dependent been considered as optional classifiers that reformulate
transition from the pre-contingent to the post contingent SVM’s quadratic programming as a minimum enclosing
state. In this paper, only SSA is considered. The key ball (MEB) problem or enclosing ball (EB) problem and an
issues in SSA are fast identification of the set of insecure efficient  (1+ )  approximation  algorithm  to  obtain a
contingencies and their evaluation creating quick impact close- to-optimal SVM solution have been successfully
on the power system operation. applied to solve many large-scale classification problems

The steady-state load flow model is a well established [20-22]. However, the online learning issue of the CVM
approximation for understanding a power system in and BVM classifiers is still not addressed. In these two
normal operation where load and generation vary slightly algorithms, data are processed in a batch mode. When a
around a base case. The assessment of the present and new training sample arrives, the whole training process
the impact of possible line or generator outages are should be implemented once again to adjust the classifier.
determined by solving numerically the non-linear load On the other hand, Relevance Vector Machine (RVM) is
flow equations for all contingencies [2]. In literature, a another new machine learning algorithm, which is based
survey of several power flow methods are available to on Probabilistic Bayesian framework and has been
compute line flows in a power system like Gauss Seidel implemented for better classification performance on SSA
iterative method, Newton-Raphson method etc, but these and overcomes the drawbacks of existing methods. But it
are either approximate or too slow for on-line pertains to some inconvenience like previous existing
implementation [6, 7].With the expansion of artificial machine learning models particularly misclassification rate
intelligence based techniques such as artificial neural is not tolerable with larger power networks [23]. To prevail
network, fuzzy logic etc. in recent years, there is a growing over the drawbacks of previous machine learning based
trend in applying these approaches for the operation and classifiers, a Gaussian processes based Informative
control of power system [5]. Applications of Artificial Vector Machine (IVM) [24] has been proposed in this
neural network systems for SSA have gained popularity paper. It models more sparsity, good generalization
over the conventional methods as they are efficient in performance, free choice of kernel function and
classifying the patterns as secure and insecure. distributive prediction. Because of these advantages, the

The use of ANN based pattern recognition (PR) results obtained from an IVM are superior to existing
approach, Decision tree based security classifier, Genetic algorithms. In the proposed IVM approach, the
algorithm based neural network , fuzzy logic combined performance is superior as compared to other machine
with neural network , query-based learning approach in learners due to the possibility of misranking being
neural networks [8, 9, 10] for static security evaluation eliminated [25, 26].
process have also been reported in [11-15]. But these In order to improve the performance of classification,
procedures may not have addressed the issue of large it is necessarily required to elaborate off-line
number of possible contingencies in power system computations for generation of good feature set as the
operation. Furthermore, ANN based SSA is found to be input variables. Therefore, the features which can be
highly time consuming and infeasible for real time considered for static security classifier must be significant
applications [12, 13, 14]. variables from the classification point of view. As

In response to these issues, Machine learning mentioned in literature [18], under certain justigfied
algorithms are considered as alternatives for all the type assumptions, the generator currents and load currents can
of power system security problems, The application of be expressed as a function of generator currents. The
Support vector machine (SVM) for various studies of generator currents are directly related to the real and
security  assessment  has  been  reported  earlier [16-19]. reactive powers of the generators. Hence, the real power
In this reference, the superior performance of SVM over and reactive power demands can be expressed as a
ANN  in  terms of accuracy, speed and distribution of function of real and reactive powers of generators [16].
high-risk cases has been presented for the steady state Hence, in this paper, the proposed initial feature set is
security of a large-scale power system. However, SVM having only real and reactive power generations of each
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generator (i.e., P , Q ), capable of providing sufficient pre-disturbance real and reactive power generation ofGi Gi

discriminating information about the class of system each generator, i.e., P and Q , respectively [16, 17].
security (secure or insecure). The proposed IVM Having selected the features the next step is to obtain the
approach is implemented on a standard IEEE 118- bus decision function or classifier for SSA. 
system. The simulation results prove that the IVM
classifier gives a professional classification, enhancing its Brief Review of Informative Vector Machine: IVM is a
suitability for on-line security assessment and even novel machine learning algorithm based on Gaussian
evidences reduction in size of feature space and error rate processes(GP) and introduced by Lawrence et al. [24-26]
by exploiting by way of an efficient F -Value feature which helps better for classification and regression
selection method. problems. It is formulated as a sparse Gaussian process

The Proposed Methodology training, small consumption of memory, strong
Significance  of  Training  and  Testing  Data  Set: An effectiveness in sparseness and good classifying
off-line process which is based on load flow solution by performance. It is a more fundamental model than the
Newton Raphson (NR) method to represent the dataset support vector machine for function approximation in
for all possible operating condition of the power system learning.
has been considered. The data set is generated by Consider a simple hidden variable model and its
varying the load and generation between 80% to 130% of hidden variable of f , observed variable y and the input
the base case and the voltage magnitude is assumed data x as given in eqn. (1), (2) and (3) that are independent
between 0.90 p.u –1.10 p.u for all test systems and line each other,
over load limit in MVA [15] is taken as 130% of base MVA
flow. For each operating condition, Single line outage is (1)
simulated and steady state variables are obtained from
load flow solution that are listed as voltage magnitude V , (2)i

voltage angle , real power generation P , reactive poweri Gi

generation Q , real power demand P , reactive power (3)Gi Di

demand Q , active P the real power flow in lineDi i-j

connected between buses i and j, Q the reactive power In this model, the hidden function f follows the inputi-j

flow in line connected between buses i and j, S line MVA data x and the observed value y follows the hiddeni-j

between buses i and j. variable f. By changing the observed value to a
 For quick evaluation of static security, a number of continuous value or a discrete value, it can be used for

variables have been considered out of few hundreds of “iteration” or “classification”. The GP assumes a
steady state variables of which all of them will not be multidimensional normalized distribution with an average
significant [5]. The main objective handled in this paper is of 0 for a joint distribution for any points. As a result, the
to predict static security status in a faster manner with a priori distribution for the hidden variables is given by
selection of most effective variables for feature selection the equation.
and classification. According to the literature, Arora and
Surana [17] have derived that if power system is not (4)
optimally  dispatched,  the  feature   set   consisting of
pre-disturbance real and reactive power generations and Note that  is a parameter for the kernel function; N,
real and reactive power demands at each system bus carry the normal distribution; K, the kernel function matrix.
sufficient information about system security. Under Here, the variance covariance matrix can be replaced
certain justified assumptions, the generator currents and by a kernel function matrix. Next, Consider the
load currents can be expressed as a function of generator simultaneous probability distribution for the hidden
currents. The generator currents are directly related to the variable and the observed value is given by the eqn. (5).
real and reactive powers of the generators. Therefore, the
real power and reactive power demands can be expressed
as a function of real and reactive powers of generators.
Therefore,  the  proposed  initial feature set consists of (5)

Gi Gi

based on Bayesian theory, which has high speed in model
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where p(y |f ) is the noise model which gives the function where k is the kernel function vector for x* and X; andn n

between the hidden variable and the observed value. k(x*, x*) is the kernel function for x* and x*.
By assuming that the noise model is the normal Let us select the value of I ={n} ( i = 1, ......., d ) as the

distribution is given by, active set and |I| = d < N. the data selection involves by

(6) maximizes the amount of entropy updates for the

where B is the triangular matrix in which the n  element is active set.-th

given by . Normal Noise Model: A noise model is the necessaryn

Let us consider the priori distribution p(y | X, ) for parameter for IVM data selection used by GP. Consider a
the observed value. This quantity can be obtained by normal distribution is referred to as a normal noise model
integrating f in Eqn. (5). Also, it can be calculated directly based on eqn. (3) as given by;
by using normal distribution as given by;

(7) assuming a normal distribution, can be readily calculated

Now concluding  the  equations,  by  introducing  the included in the i-th active set is given by the following
distribution for the hidden variable f(x*) in the unknown equation using eqn. (3).
data set x*. The posteriori distribution p(f|X,y, ) can be
represented by the following equations using Bayes’
theorem with Eqn. (5) and (7),

(8)

(9) posteriori variance covariance matrix in the active set.

where  µ  =  [µ ..........µ ]   is   the     average   vector for the equation are obtained by taking the logarithm of the1 N
T

posteriori distribution and  = [ ..... ]  is the variance expected value Z and finding the derived function:1 N
T

covariance matrix for the posteriori distribution.
Moreover, the posteriori distribution for the hidden vector (15)
f(x*) can be readily marginalized by assuming a normal
distribution is given by;

(10) Using Eqns. (15) and (16), we obtain;

The mean and dispersion for the posteriori (17)
distribution for x* in the new data is represented [24]
using the following equation based on x* and the input where v is called the update element and plays a vital role
data X, kernel function vector k, the kernel function matrix in updating data selection and kernel parameters. 
K for X and eqn. (9) is modified as;

µ(x*) = kTK .  B y (11) with the difference between the entropy in the posteriori1

(x*) = k(x*, x*) + k  K  (  - k) K  k (12) entropy before including the new data. Note that the2 T 1 1

i

selection of the data set J= {x }/ I ( j=1, ...., N) whichj

posteriori distribution after the data is included in the

(13)

Moreover, the expected value of the noise model,

and the expected value Z when selecting n  elementsi

(14)

where µ is the n  element in the posteriori vector µ  ini–1,ni i i-1

the active set; and is the n  triangular element in thei-1, ni, i

i-1

Next, the two parameters shown in the following

(16)

Data Selection: The IVM selects the data in accordance

distribution including the new data in active set and the
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initial active set is empty. The entropy of the posteriori Leibler divergence KL (q||p) between the true posteriori
normal distribution given by the variance covariance distribution q and the approximated posterior distribution
matrix  and the mean vector µ is defined in the eqn. (18), p is minimized based on the variational Bayes method [25].

(18) distribution is impossible and so is difficult to work with.

Therefore, the difference H in the entropy after the inverse Kullback- Leibler divergence KL (q||p) is zero
including  the  data is given as follows using Eqns. (17) and so can find the parameters for the true posterior
and (18): distribution [24, 25].

 = H (N ) -H (N) = (19) Let us consider a diagonal element vector  for thenew

Note that N  is the normal distribution after datanew

inclusion; I is the  N×N  unit  matrix;  and  e   is  the  n = diag ( ) (25)ni ni

element in the unit matrix and H is found for all elements
in the data set J= {j}\I (j=1...N), the maximum j is included  is necessary for calculating the update element v
in the active set I and n = J. This is given in the eqn. (20), and H The following equations result when the diagi

J = n = arg max H (20)i n J i, n

Based on the above, the element n  included in thei

active set is selected. However the number of elements in (27)
the active set increases as a result of data selection and
so µ  and  change. µ  and  are called the kernel In the same fashion, the mean vector µ  for theI I I I

parameters and must be updated every time the data posteriori distribution is necessary to calculate v  and can
selection is performed for all the d times it is performed. be represented as shown in the equations below using

To perform classification using the active set created Eqn. (23).
through the data selection. The mean and dispersion for
a posteriori distribution for x* in unknown data can be (28)
represented using the equations below based on eqn. (11)
and (12), µ  = 0 (29)

(21) Here, the updated eqn. (26) and (28) are needed to

(22) represented using the equation below by using the row

Updating the Kernel Parameters: Updating the kernel
parameters is required whenever calculating H The (30)ini.

equation for updating the variance covariance matrix I

and the mean vector µ  in the posteriori distribution can be = K (31)i

represented with the following equations using eqn. (13)
through (17). Note that, K is the kernel function matrix for the input

(23) given by , Where S , n  =  e  = K  - 

(24) The most important evaluator of the IVM

Here, the equations above were derived using defined as the ratio of successfully classified patterns to
Assumed   Density   Filtering    (ADF).     Normally,   when the number of patterns in Data set of IEEE 118 test bus
approximating a posterior distribution, the Kullback- system.

However, calculating the moment of the true posterior

In contrast, ADF assumes that the derived function for

I

variance covariance matrix .i

I i

I ni

i, ni.

operator is used for Eq. (24): 

 = (26)I

i

ni

0

calculate the variance covariance matrix,  can bei

vector s  in Eqn. (24).i-1

0

data X; and M is the i×N matrix where the i-th row isi

i-1 i i-1 ni ni

m  .m , n .i-1 i-1 i

performance is the Classification accuracy which is
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Classification Accuracy (CA) = (32)

Misclassification can be of two distinguished types of error, depending on the actual class of the misclassified
patterns,

Misclassification (MC) = (33)

Alert misclassification (AMC) = (34)

Emergency misclassification (EMC) = (35)

In power system security evaluation, the alert The F- value can be interpreted as a measure of the
misclassifications are not of much harm, but emergency classification error that could arise when the variable is
misclassification may lead to brutal blackout [2]. It is, used as the only feature. The larger the value of F, the
therefore, important to ensure that EMC are kept as lesser would be the interset distance or/and smaller value
minimal. would be the dispersion. In other words, larger value of F

Feature Selection Process: The essential problem in variables to be used as features should have high values
classification using IVM is identifying a representative set of F.
of features from which to design a classifier model [18, 19]. The selection of features begins with the
This paper addresses the problem of feature selection for computation of F-values for all components (variables) of
machine learning classifier through a correlation based F- pattern vector in the training set. The variable with the
Value approach. The central hypothesis is that good largest F value is selected as a first feature. Let this
feature sets contain features that are highly correlated variable be z . When selecting other features, redundant
with the class, yet uncorrelated with each other. information is omitted by discarding these variables which

The number of variables characterizing a power are correlated to z , i.e. those variables having a
system operating state is quite large which all of them will correlation coefficient greater than 0.8, [2, 5] say. The
not be significant. This makes the security classifier proceeding procedure is repeated until the required
design complicated and requires large computational number of features has been reached, or the F-value of the
resources [2]. remaining variables is small. The optimal set of above

In order to reduce the number of features, F-value features serves as an input database for designing the
feature selection which is based on the measure of IVM classifier.
interest and intraset distances has been used .It can be
concluded in the following stages; first the features are RESULTS AND DISCUSSION
selected from pattern vector based on maximization of a
criterion function. The F-value defined by eqn. (31) is It has been observed that in many security
used as the criterion function for selection of a variable as assessments, the ability of any good classifier can be
feature, realised by its performance level when incorporated on a

(31) system. Hence in this paper, a larger IEEE 118 bus system

where, m  - Mean of the variable in the secure class, m - proposed IVM classifier.s i

Mean of the variable in the insecure class The proposed IVM classification approach to static
-  Variance  of the variable  in the secure class, - security evaluation is implemented an IEEE 118 bus power5 i

2 2

Variance of the variable in the insecure class. system [27]. The effectiveness of the proposed classifier

It is clear that, |m  - m | is the measure of interset machine learners such as SVM, CVM and RVM. The5 i

distances between the class i and class j and is the required data set for training and testing phases are
measure of dispersion of the variable in the two classes. obtained by off-line simulation by Newton Raphson load

would result in smaller classification error. Hence

1

1

larger power system rather than a smaller and simple test

has been considered to prove the efficiency of the

has been demonstrated by comparing with existing
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flow performed using MATPOWER Toolbox with
MATLAB 7.1 [28]. This data set is obtained by random
fluctuation of generation and load from 80% to 130% of
their  base  case  value  with  generation variation limited
to  their  minimum and maximum limits. The security limit
for  bus  voltage magnitude is taken as 0.90 to 1.10 p.u.
The MVA limit of system branches is assumed as 130% of
base case.

The IEEE-118 bus sample system details [29] are
shown in Table 1 and 2, one at a time, outage studies are
performed and form the set of disturbances to be utilized
for steady state security in the power system. The
patterns  or  variables  are generated through the load
flow results. The generated variable set consists of 118
numbers of voltage magnitude variables (V ), 118 numbersi

of voltage angle ( ), 19 numbers of real power generationi

variables (P ), 54 numbers of reactive power generationGi

variables (Q ), 99 numbers of real power demand variablesGi

(P ), 99 numbers of reactive power demand variables (Q ),Di Di

186 numbers of active real power flow variables (Pi-j) , 186
numbers of reactive power flow variables (Qi-j), 186
numbers of reversal of real power flow (Pj-i), 186 numbers
of reversal of rective power flow (Qj-i), 186 numbers of real
power losses(Ploss), 186 numbers of reactive power
losses(Qloss)  and  186  numbers of line MVA variables
(Si-j). As a result, the total system variables are counted
to 1809 variables initially.

Irrelevant variables at certain buses such as zero
loads, zero generation and constant values are neglected.
Likewise, the system variable that represents real and
reactive power losses has been rejected that amounting to
1001 operating states as input variables for classification.
All feasible 1001 variables are subjected to static security
check with voltage limit and line flow limit. 

Table 1 and 2 show the complete details about an
IEEE 118 bus system. It can be seen that, for a possible
1063 cases as operating scenarios, 744 operating
scenarios are found to be secure and the remaining 319
cases are found to be insecure. The training and testing
samples are split in random by the ratio of 80 % (850
cases) for training phase and 20% (213 cases) for testing
phase as given in Table 3.

Hence, the IVM classifier is obtained by use of the
splitted training and test data sets to provide better
classification results with important features from input
attributes. Table 4 shows an optimal set of patterns
selected using F-Value feature selection process. Among
all these variables, effective input features have been
selected by using correlation based feature ranking
analysis. By having a threshold value of 0.8, 412 and 11
featured inputs (uncorrelated components) were obtained.

Table 1: Details of IEEE 118 bus system components
IEEE 118 Bus System Components
No of Buses 118
No of Generators 54
No of Committed Gens 54
No of Loads 99
No of Fixed loads 99
No of Shunts components 14
Total no of Branches 186
No of Transformers 9

Table 2: Details of IEEE 118 bus system capacity
IEEE 118 Bus System P(Mw)  Q(Mvar)
Total gen capacity 9966.2 --
Generation (actual) 4374.9 795.7
Load 4242 1438
Fixed 4242 1438
Shunt (inj) -- 84.4
Losses (I^2 *Z) 132.86 783.79
Branch Charging (inj) -- 1341.7

Table 3: Data set for Training and Testing Phases
Scenarios Overall Training Testing
Total No of Cases 1063 850 213
Secure Cases 744 597 147
Insecure Cases 319 253 66

The effectiveness of the dimensionality reduction has
been determined with a threshold value of 0.8 and the
highly correlated variables are discarded from the total
pattern variables with all feasible variables including P ,G

Q  as a scenario and another case study considering PG G

and Q  variables alone. G

It is clear from Table 5, that the training accuracy of
IVM classifier gives better performance by choosing the
optimized kernel parameters. In order to justify this
training result, any good classifier desires to ensure
higher value of accuracy and less error rate forever. From
Table 6, it is evident that the performance of IVM
classifier is improved with selection of good feature set
and elimination of redundant data.

As seen from Tables 6 and 7, the proposed IVM is
very superior in classification in terms of higher
classification   accuracy   and   less   misclassifications.
The blend of IVM classifier with F-Value algorithm yields
zero error or 100% accuracy for classifying the data
patterns for both the case studies under consideration. 

During testing phase, an overall efficiency of 99.53%
has been achieved with all possible steady state variables
for the IEEE 118 bus system, whereas maximum efficiency
of 100 % has been achieved for the same118 bus system
with F-value feature selection. With the implementation of
F-value feature selection, the size of the input variables
gets reduced from 1001 variables to 412 variables.
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Table 4: Feature Selection Process
Case study IEEE118 bus system (All feasible variables) IEEE118 bus system Only P  and QG G

No. of pattern variables 1001 73
No. of features selected 412 11

Table 5: Choice of kernel parameters for better accuracy
Model (kernel) Alpha max epsilon Noise model Training accuracy of IVM (%)
Gaussian e e 7 100 (850/850)-12 4

Linard, rbf e e 9 99.76(848/850)-12 5

Table 6: Results of IVM-SSA classifier before and after feature selection
Performance
Evaluation Training with 1001 Testing with 1001 Training with 412 Testing with 412
of IVM Variables considering 850 patterns Variables considering 213 patterns Variables considering 850 patterns Variables considering 213 patterns
CA (%) 100 (850/850) 99.53(212/213) 100 (850/850) 100 (213/213)
MC (%) 0 (0/850) 7.526(1/213) 0 (0/850) 0 (0/213)
AMC (%) 0(0/597) 0 (0/147) 0 (0/597) 0 (0/147)
EMC (%) 0 (0/253) 1.515 (1/66) 0 (0/253) 0 (0/66)

Table 7: Results of IVM-SSA classifier with only P  and Q  as selectedG G

Performance
Evaluation of Training with 73 Testing With 73 Training With 11 Testing With 11
IVM Attributes and 850 patterns Attributes and 213 patterns Attributes and 850 patterns Attributes and 213 patterns
CA(%) 100 (850/850) 98.12 (209/213) 100 (850/850) 100 (213/213)
MC (%) 0 (0/850) 1.87 (4/213) 0 (0/850) 0 (0/213)
AMC (%) 0 (0/597) 0 (0/147) 0 (0/597) 0 (0/147)
EMC (%) 0 (0/253) 6.06 (4/66) 0 (0/253) 0 (0/66)

Similarly, the steady state security assessment has about the system state. The proposed model holds the
been carried out by limiting the variables corresponding promise as fast classifier for static security of large scale
to P and Q  alone. The number of input variables power systems with the presence of real and reactiveG G

considering only P  and Q  without feature selection is 73 power generation alone in the IEEE 118 Bus system. AG G

and  its corresponding  classification accuracy is 98.12 %, Gaussian based kernel has been established to segregate
whereas, the number of input variables considering only the data space which is relevant to current condition of
P  and Q  with feature selection is 11 and its the system into several classes, thus improving accuracyG G

corresponding classification accuracy is 100 %. Results and to minimize error rate. The selected Gaussian kernel
prove that, the performance of IVM model considering P , can identify the resemblance of distinctive input andG

Q as input variables is similar to that of considering all outputs of the dataset quickly. Future work will focus onG

the steady state variables. Hence, it can be concluded that the application of IVM classifier with different kernels and
the steady state security assessment considering only P optimizing its parameters for real time transient andG

and Q  is sufficient for obtaining efficient classification dynamic security assessment of power systems.G

with maximum accuracy.

CONCLUSION
1. Balu, N., T. Bertram, A. Bose, V. Brandwajn, G.

IVM-based SSA technique for an IEEE 118 bus power Cauley, D. Curtice, A. Fouad, L. Fink, M.G. Lauby,
system has been proposed. The proposed correlation B.F. Wollenberg and J.N. Wrubel, 1992. On-line
based F-value feature selection algorithm is more relevant power system security analysis. Proceedings of the
and suitable to deal with the problem of high IEEE, 80(2): 262-282.
dimensionality as it will restrict the number of variables 2. Pang, C.K., A.J. Koivo and A.H. El-Abiad, 1973.
that are needed to be obtained accurately. Simulation Application of Pattern Recognition to Steady-State
results prove that, such technique is feasible and Security Evaluation in a Power System. IEEE
provides a deeper insight into the system performance, Transactions on Systems, Man and Cybernetics,
since it presents fast, accurate and relevant information 3(6): 622-631.
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