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Abstract: In this paper the feasibility of using Sample Autocorrelation Function (SACF) and the indices derived
from SACF such as Standard Error (SE) of ACF as a measure of non-stationary of signals is investigated. Even
though autocorrelation is a method widely used to analyze the non-stationary of signals, its association with
non-stationarity is not objectively studied till now. Two sets of test signals are used for investigating the
feasibility; in the first set of test signals different sinusoidal frequency components are concatenated at
different scales to obtain different levels of non-stationarity. The second set of test signals are random
sequences. The simulation of test signals and computations are performed in Matlab . The value of SE is found®

to be robust to change in sampling rate and offset. Entropy is observed to be following the variation in non-
stationarity of the signal. The SE and Absolute deviation of SE from the reciprocal of the square root of number
of samples ( ) is not correlated with the entropy (r=-0.1200). The dynamic variability of the SE and  is less
when compared with the variability of entropy. This investigation emphasize on the need for reformulating the
ACF based non-stationarity measures.
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INTRODUCTION (x ,…..,x ). A shift of time ‘ ’ introduced in samples, yields

The term, ‘non-stationarity’ refers to the So that, the joint probability distribution function of the
characteristic of a signal or a system, in which the latter set random variable is F (t ),…., X(t ) (x ,…..,x ).
statistical or spectral features change over time. In non- The random process X (t) is said to be stationary in the
stationarity signals and systems statistical properties strict sense, strict stationary or strictly if the following
could be deterministic or non-deterministic functions of condition in eq. (1) is met.
time. A stable system normally is stationary, provided it
may turn to be non-stationary at any time. It is a well- (1)
known fact that ‘signals characterize the system’.
Consequently, the study of non-stationarity of signals do In other words, a random process X(t), initiated at
have great important in system studies and signal time t = -8 is strictly stationary if the joint probability
processing. distribution function of any set of random variables

In a random process X(t), initiated at t = -8, given obtained by observing the random process X(t) is
X(t ), X(t )… X(t ) denote the random variables obtained invariant with respect to the origin at time instant, t=0 [1].1 2 k

by observing the random process X(t) at the instants t This confirms that a stationary process is one whose1,

t …… t respectively. The joint probability distribution statistical properties do not change over time. More2 k

function   of    this    random    variable   is  F (t ),….,  X(t ) clearly, all moments of all degrees, the expectations,x 1 k )

1 k

a new set of random variables, X(t ), X(t ),….. X(t ).1+ C 2+ k+

X 1+ k+ 1 k
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variances, third order and higher order moments of the the data and to detect the long memory effects in financial
process, at any part of the signal remain equal. A random time series. Ahn et al, [13] observed that signal kurtosis
process X(t) is said to be non-stationary if the following is useful to characterize the repeating peaks of the
condition in eq. (2) is met. vibration signal, generated due to faults in roller bearing

(2) spectral kurtosis and Ensemble Empirical Mode

Many researchers from system studies, process produced by faulty bearing from noise. System properties
instrumentation,   data    analytics,    time   series  analysis, of structures like buildings and bridges may vary with
biomedical instrumentation, vibro-acoustics and signal time due to the variation in factors like temperature, aging
processing have already explored the scope of non- and loading. To identify such time-varying system
stationarity based features. C. Cao and S. Slobounov [2] properties, Y. Guo and A. Kareem [15] proposed a system
used Shannon Entropy of peak frequency shifting to identification framework based on instantaneous spectra
measure the non-stationarity of Electro Encephalograph derived from the Time–Frequency (T-F) representation
(EEG) signals. To quantify the non-linear  dynamics of obtained via Short Time Fourier Transform (STFT) and
the underlying attractors in healthy, inter-ictal and ictal Wavelet Transform (WT). In the study of S. Chen and J.
EEG, N. P. Subramaniyam and J. Hyttinen [3] Lin [16], intra and inter wave frequency modulation were
recommended a method based on Recurrence Network utilized to quantify the nonlinearity and non-stationarity
(RN). Application of non-linear and wavelet based of dynamic response of high speed vehicle–track
features for the automated identification of epileptic EEG coupling system. G. A. Salini and P. Perez [17] used LLE,
signals were illustrated by Acharya et al., [4]. S. K. Chuan the shape of decay of ACF and CD and Hurst exponents
[5] employed Hurst Exponent (HE), Fractal Dimension to investigate deterministic chaotic behavior in the time
(FD), Approximate Entropy (ApEn), Largest Lyapunov series data of fine particulate matter concentration in
Exponent (LLE) and Correlation Dimension (CD) to atmosphere.
discriminate  between  normal,   pre-ictal  and   ictal Autocorrelation is a method widely used to measure
classes of EEG. Subha et al, [6] used CD, HE, bi-spectrum periodicity or stationarity of a signal. SACF was used for
features of the higher order spectra, LLE, different order determination of mixed stationary and non-
variations of entropy and phase space as well as stationary ARMA models by R.S. Tsay and G. C. Tiao
recurrence plots to analyze the chaotic behavior of EEG [18]. B. Ahmadi and R. Amirfattahi [19] used CD and
signals.  Melkonian et al, [7] introduced fragmentary Higuchi Fractal Dimension (HFD) to estimate the bi-
spectrum as a measure that brings the frequency spectral index of EEG. F. C. Blondeau [20] pointed out that
contents, timing and duration of segments of Heart Rate auto information function and autocorrelation function
Variability (HRV) signals. remain complementary tools for investigating random

Chu et al, [8] utilized Rate-Transient Analysis (RTA) signals. S. Degerine [21] illustrated that the Partial Auto
for characterizing and simulating the non-linear and non- Correlation Function (PACF) like Auto Correlation
stationary features caused by the changes in confined Function (ACF) can be used in order to parameterize non-
Pressure–Volume Temperature (PVT) properties of stationary time series. Y. Takizawa and A. Fukasawa [22]
unconventional oil reservoirs. Su et al, [9] recommended proposed a time-dependent autocorrelation method to
Re-Scaled range analysis (R/S), Brock Dechert study the non-stationary characteristics of EEG signal in
Scheinkman (BDS) test, power spectra, recurrence plot, human sleep. In order to extract the frequency
LLE, Kolmogorov entropy and CD to identify the components produced by faults in bearing systems a
nonlinearity of time series data. An Autoregressive-fit combination of Hilbert-Huang Transform (HHT) and
Residuals Kurtosis (ARK) method to detect nonlinearity autocorrelation was put forth by Xue et al, [23]. B. J.
and non-stationarity in time series were introduced by M. Shannon and K. K. Paliwal [24] computed the spectral
D. Domenico and   V.   Latora  [10].W.  H.  J.  Toonen  [11] features using higher-lag autocorrelation coefficients for
observed that the non-stationarity had significant effect speech recognition. L. Rabiner [25] used autocorrelation
on the outcomes of flood frequency analysis in both short for the analysis of pitch in speech signals. The use of an
and long input data series.Szupiluk et al, [12] developed autocorrelation function in the seasonality analysis for
a multi-stage structural analysis technique, capable to the fatigue strain data to identify the seasonal pattern had
assess the level of randomness, to identify the cycles in been presented by Nopiah et al, [26].

systems. Guo et al, [14] proposed the combination of

Decomposition (EEMD) to extract random signals
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Box et al, [27] suggested that SE of the ACF can be The consistency of the statistics at different instant
used to estimate the non-stationary behavior of a signal. of time is considered to be a good indicator of stationarity
It was stated that, as the signal become more non- in signals. Similarly, entropy is an index extensively
stationary, the value of SE moves close to the reciprocal employed for estimating the relative degree of
of the square root of the number of samples in the signal. randomness of signals. In this article the pattern of
The interdependency between the non-stationarity and variation of SE of SACF computed from the test signals of
the numerical value of SE and is not yet investigated. In different non-stationarity levels are compared with the
this paper, the variation of SE and  are investigated on patterns of variation of global entropy and pattern of
test signals of different levels of non-stationarity. Section variation of SD of the variance of epochs of equal length
2 of this article describes the procedure for simulating the in the test signals. The influence of the sampling
test signals and analytical formulation for computing the frequency and offset on the ACF and SE are also
SE of SACF. The numerical values of sample entropy, observed. The simulation of test signals and computation
statistical variance, SE and computed from the standard of the ACF, SE and its statistics are performed in Matlab .
test signals are analyzed in Section 3, qualitatively and
objectively.

Methodology: To test the feasibility of using the SE of
ACF two sets of test signals are used, in the first set of
test signals different sinusoidal frequency components where ‘N’ is total number of samples, ‘q’ is lag beyond
are concatenated. Three sinusoids, 5 Hz, 10 Hz and 15 Hz which the theoretical ACF is effectively 0 and ‘r ’ is the
are generated with a sampling frequency of 2.5 KHz. SACF function. If the series is fully uncertain, SE
These frequency components are randomly concatenated degrades to 1/vN [30].
such that at different parts of the signal the frequency is
different. The number of samples in all the three The SACF ‘rk’ at lag ‘k’ is
components is kept equal in the test signal. To generate
test signals of different non-stationarity levels, the (4)
number of samples in the frequency components which
form the test signals is varied. The first set of test signal
comprises five signals. In the first test signal the number where‘C ’ is the variance of the signal with zero shift and
of samples in each frequency component or the length of ‘C ’ is the co-variance of the signal.
each sinusoid is 125. Sinusoids of 5 Hz, 10 Hz and 15 Hz,
each with a length of 125 samples are concatenated (5)
unevenly to form the first test signal. The total number of
samples in the test signals is kept constant typically at
9000. In the second test signal the number of samples in where ‘µ (Y )’ is the mean value of the stochastic signal
each frequency component is 250. Sinusoids of 5 Hz, 10 ‘Y ’ given by, 
Hz and 15 Hz, each with a length of 250 samples are
concatenated unevenly to form the second test signal. (6)
Likewise, by varying the number of samples in the
sinusoids which constitute the test signal is varied as a
multiple of two, as 125, 250, 500, 1000 and 2000. The (7)
change in frequency with respect to time is faster when
the number of samples in the sinusoids which constitute where ‘Y ’is the shifted version of the signal ‘Y ’ and
the test signal is 125 than when the number of samples in given k=0,1,2 … …K.
the sinusoids which constitute the test signal is 250 or
more. Consequently, the non-stationarity of the test RESULTS AND DISCUSSIONS
signals increases with respect to the increase in the
number of samples in the sinusoids which constitute the The two test signals formed by concatenating
test signal. The second set of test signals are random sinusoids of frequency 5 Hz, 10 Hz and 15 Hz, each with
sequences of length 10000, with normalized values. a  length  of 1000 and 500 samples for a total 9000 samples,
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Fig. 1: Unevenly concatenated sinusoids of 5 Hz, 10 Hz and 15 Hz, each with a length of 1000 samples for a total number
of 9000 samples.

Fig. 2: Unevenly concatenated sinusoids of 5 Hz, 10 Hz and 15 Hz, each with a length of 500 samples for a total number
of 9000 samples.

repeating unevenly, are shown in Fig. 1 and Fig. 2, in Table 1. In Table 1, the number  of    samples  over
respectively. In the first test signal (Fig. 1) the change in which  each  sinusoid  appears in the first test signal is
frequency with respect to time is less compared to the 125.  To  control  the  non-stationarity  of  the  test
second test signal in Fig. 2. This is because, each signals, the number of samples over which each sinusoid
sinusoidal frequency in the first test signal persists over appears which constitute the test signals is increased as
1000 samples. Whereas, in the test signal in Fig. 2, the a multiple of two in the consecutive sinusoids. When the
frequency of the signal apparently changes in every 500 number of samples over which  the  frequency
samples. Consequently, the second signal is more non- components persist increases the non-stationarity
stationary than the first test signal. decreases. The decreasing pattern of  entropy  with

The numerical values of  entropy,  variance,   SE  of respect to decreasing non-stationarity can be observed in
the  SACF  and ,  computed  from  the test signals Table 1. But the patterns SE of SACF and  are not
formed by  concatenating  the  sinusoids  are furnished monotonically decreasing.
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Table 1: Numerical values of Entropy, variance, SE and  of the test signals formed by concatenating the sinusoids
Frequency of Number of samples Sampling Total number of samples
components  (Hz) in sinusoids (Samples) Frequency (Hz) in the test signal (N) Entropy Variance 1/vN SE
5,10,15 125 2500 9000 6.3564 0.2522 0.0105 0.2770 0.2665
5,10,15 250 2500 9000 5.6393 0.4200 0.0105 0.3140 0.3035
5,10,15 500 2500 9000 4.30427 0.5001 0.0105 0.1952 0.1847
5,10,15 1000 2500 9000 4.30424 0.5001 0.0105 0.1720 0.1615
5,10,15 2000 2500 18000 4.30421 0.5000 .0075 0.1643 0.1569

Fig. 3: SACF of test signal in Fig. 1

Fig. 4: SACF of test signal in fig. 2

The variation of SE of SACF and  shows signal in Fig. 1 and Fig. 2 are shown in Fig. 3 and Fig. 4,
randomness, irrespective of the falling pattern of non- respectively. The wave pattern of the autocorrelation in
stationarity. Entropy, to a certain extent is able to follow Fig. 3 and Fig. 4 are abruptly distinct. This is a clear
non-stationarity of the test signals, compared to SE and indication of the scope of ACF to be used to characterize

. The plot of the normalized SACF of non-stationary test the non-stationarity of signals.
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Fig. 5: Normalized random test signal sequence of length 10000.

Fig. 6: SACF of random tests signal.

The plot of a  simulated  random  test  signal
sequence  is  shown  in  Fig.   5.   SACF   of the random (8)
test signal is shown in Fig. 6. The numerical values of
entropy,  variance,  SD   of   the   variance   of    the
epochs,  SE  of  the SACF and , computed from 50 Over the 50 random test signals the range of entropy
random   test    signals     are    furnished    in    Table  2. is from 4.3226 to 4.6140. Whereas, the range of SD of
To compute the SD of variance of the epochs the test variance of the epochs is 0.0016 to 0.0049 and the range of
signals are divided into epochs, each carrying 1000  is from 0.0099 to 0.0101. The SE varies between 0.0199
samples. The SD of variance may exhibit good and 0.0201. Compared to the range of entropy, the range
correspondence with non-stationarity if the epoch size is of SE and  is less. The poor dynamic variability of the SE
reduced further. Unlike the ACF of test signals in fig. 3 and  is because of the influence of normalization factor
and Fig. 4, the ACF of random test signal in Fig. 6 does N, which is the number of samples of signal, as evident in
not follow any cyclic pattern. Eq. 8.
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Table 2: Entropy, variance, SD, SE and  of random test signals
SD of the SD of the

Test Signal Entropy Variance varianceof epochs SE Test Signal Entropy Variance variance of epochs SE
1 4.5444 0.0702 0.0021 0.0200 0.0100 26 4.3854 0.0509 0.0023 0.0201 0.0101
2 4.4724 0.0586 0.0036 0.0200 0.0100 27 4.3762 0.0525 0.0019 0.0200 0.0100
3 4.4531 0.0614 0.0027 0.0201 0.0101 28 4.4614 0.0605 0.0025 0.0200 0.0100
4 4.4256 0.0529 0.0035 0.0200 0.0100 29 4.4044 0.0548 0.003 0.0200 0.0100
5 4.4121 0.0567 0.0016 0.0201 0.0101 30 4.4478 0.0635 0.0034 0.0199 0.0099
6 4.4464 0.0640 0.0031 0.0201 0.0101 31 4.3226 0.0500 0.0022 0.0201 0.0101
7 4.4479 0.0577 0.0021 0.0200 0.0100 32 4.4033 0.0588 0.0032 0.0200 0.0100
8 4.4971 0.0573 0.0028 0.0201 0.0101 33 4.4897 0.0638 0.0033 0.0199 0.0099
9 4.4715 0.0632 0.0043 0.0200 0.0100 34 4.4362 0.0564 0.0025 0.0200 0.0100
10 4.5279 0.0691 0.0025 0.0200 0.0100 35 4.4784 0.0667 0.002 0.0199 0.0099
11 4.4893 0.0573 0.0017 0.0200 0.0100 36 4.6140 0.0832 0.0024 0.0201 0.0101
12 4.4981 0.0668 0.0029 0.0201 0.0101 37 4.4681 0.0606 0.0023 0.0199 0.0099
13 4.5104 0.0739 0.0049 0.0200 0.0100 38 4.5454 0.0676 0.0016 0.0201 0.0101
14 4.5019 0.0663 0.0022 0.0201 0.0101 39 4.3823 0.0628 0.0023 0.0200 0.0100
15 4.4864 0.0607 0.0035 0.0200 0.0100 40 4.4207 0.0538 0.0028 0.0200 0.0100
16 4.5018 0.0594 0.0036 0.0201 0.0101 41 4.4422 0.0572 0.0026 0.0199 0.0099
17 4.4837 0.0617 0.0029 0.0200 0.0100 42 4.5044 0.0609 0.0027 0.0199 0.0099
18 4.4431 0.0565 0.0029 0.0201 0.0101 43 4.5540 0.0669 0.0033 0.0199 0.0099
19 4.4268 0.0464 0.0018 0.0200 0.0100 44 4.4880 0.0598 0.0021 0.0200 0.0100
20 4.5005 0.0692 0.0033 0.0200 0.0100 45 4.5693 0.0655 0.0025 0.0200 0.0100
21 4.4407 0.0624 0.0023 0.0200 0.0100 46 4.4342 0.0652 0.0025 0.0201 0.0101
22 4.5376 0.0667 0.0029 0.0199 0.0099 47 4.4666 0.0607 0.0032 0.0201 0.0101
23 4.5372 0.0644 0.003 0.0200 0.0100 48 4.5311 0.0747 0.0039 0.0201 0.0101
24 4.4066 0.0511 0.0031 0.0200 0.0100 49 4.4085 0.0537 0.0033 0.0201 0.0101
25 4.5464 0.0714 0.0022 0.0200 0.0100 50 4.5019 0.0601 0.0035 0.0200 0.0100

It also has been observed that the value of SE is deviation of SE from the reciprocal of the square root of
robust to change in sampling rate and offset. The number of samples is less when compared with the
robustness to the offset is because of the demeaning in variability of entropy. The auto correlation based indices
Eq. 5. The correlation between entropy and , the which are robust to sampling rate, offset and ultimately
correlation between entropy and SE is -0.1200. The the length of signals have to be developed.
correlation between SD of the variance of epochs and ,
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